

K.Cranmer, <u>B.Mellado</u>, W.Quayle, Sau Lan Wu University of Wisconsin

CERN MC Workshop 09/07/03

Thanks to a lot of people:

J.Campbell, S.Frixione, A.Djouadi, M.Grazzini, R.Harlander, I.Hinchliffe, Y.Kurihara, E.Richter-Was, M.Spira

Outline

Revisiting the H->41 channels >Move towards NLO MC description **K** factor evaluation with MCFM >Effect of cuts and IFSR **Significance and luminosity plots** *H*Further improvements >Higgs transverse momentum >NLO event generators

Revisiting the H->41 channels (1)

Revisiting the H->41 channels (2) +After isolation cuts, ZZ main background >LO MC used, need to move towards NLO MC's

Expected number of events for 30 fb⁻¹ (TDR 1999)

Higgs mass (GeV)	120	130	150	170	180
Signal	4.1	11.4	26.8	7.6	19.7
tī	0.01	0.02	0.03	0.02	0.02
Zbb	0.08	0.12	0.19	0.17	0.19
ZZ*	1.23	2.27	2.51	2.83	2.87
$ZZ \rightarrow \tau \tau ll$	0.13	0.20	0.25	0.08	0.02
Significance (S/\sqrt{B})	3.4	7.0	15.5	4.3	11.2
Significance (Poisson)	2.4	4.8	15.5	3.2	11.2

4A couple of definitions

- >K(NLO) = σ^{NLO}/σ^{LO} where σ^{LO} is evaluated for μ_R (renormalization scale) and μ_F (factorization scale) such that $\mu_R = \mu_F = M_H (M_Z)$
- \succ K(NNLO) = $\sigma^{NNLO} / \sigma^{LO}$

4For the sake of clarity

Distinguish between MC for <u>cross-section</u> <u>calculation</u> and MC for <u>event generation</u>

NLO program used here is a MC for crosssection calculation

K factors with MCFM

MCFM (J.Campbell and K.Ellis) is used for K factors evaluation

- >Complete NLO ME based calculation
- >http://mcfm.fnal.gov/
- ≻Signal:
 - *Contains ME for SM Higgs with major decays
 - *Agrees with Spira's program for total Higgs NLO cross-section
- >Background:
 - * Full ZZ ME treatment (with decays)
 - In agreement with previous NLO calculations

Effect of cuts on K factors (1)

- K factors, K(NLO), usually refer to the ratio of NLO to LO total cross-sections after integrating over transverse momentum and angles of incoming and outgoing particles
 - Experiments apply cuts on transverse momentum and angles of decay particles in final state
 - >K(NLO) should not be applied on MC's
 - $> K_{CUTS}(NLO)$ needs to be implemented:

$$K_{cuts}(NLO) = \frac{\int_{UTS} \sigma(NLO)}{\int_{UTS} \sigma(LO)}$$

Effect of cuts on K factors (2)

Effect of cuts on K factors (3)

Effect of IFSR (1)

LO ME + IFSR strictly speaking is no more LO:

- >IFSR used not only to cure infrared and collinear divergences:
 - ***** IFSR used for hard parton emission
 - * IFSR hard emission changed transverse momentum of final state particles
- Before blindly applying K factors on MC's one should check kinematical effect of hard IFSR:
 - > Define ε_{CUTS} (PS) at parton level:

$$\varepsilon_{cuts}(PS) = \int_{Uts}^{\sigma_{IFSR}} \sigma_{IFSR}(LO)$$

Effect of IFSR (2)

#H->ZZ*->4l with and without IFSR

Leptons ordered in transverse momentum

- Hard IFSR parton radiation changes the transverse momentum in high P_T region
 - Expect little effect on low mass analysis

Effect of IFSR (3)

H->ZZ*->41 with and without IFSR

Leptons ordered in transverse momentum

IFSR has little effect on pseudorapidity distributions of leptons

"Effective" K factor

$M_H({ m GeV})$	σ_{VBF}	σ_{gg}	σ_{tot}	$\sigma_{VBF}/\sigma_{tot}$	σ_{gg}/σ_{tot}
120	4.20	17.21	23.96	0.18	0.72
130	3.94	14.80	20.75	0.19	0.72
140	3.61	13.13	18.28	0.20	0.72
150	3.44	11.65	16.35	0.21	0.71
160	3.19	10.46	14.67	0.22	0.71
170	2.95	9.39	13.21	0.22	0.71
180	2.80	8.42	12.04	0.23	0.71

Signal Significance

Luminosity Plot

Higgs $P_{T}(1)$

Higgs P_T, a very important discriminating variable

A lot of progress in theory:

- > Within M_{TOP} -> ∞ limit
- > NNLO accuracy in perturbation theory
- > All order re-summation
 - * NNLL accuracy

Much harder spectrum compared to parton shower prediction

Event Generators (1)

ACFM does not provide event generation

- >Fine for cut analyses
- ◆ May profit from more realistic Higgs P_T prediction
 > Need a NLO event generator for multivariate analyses

Where the second developments in ZZ production:

- >Matrix element and parton shower matching
 - *MC@NLO, S.Frixione, B.Webber, hep-ph/0204244
 Total rates good to NLO
 - Y.Kurihara et al., Nucl. Phys. B654 (2003) 301-319
 Total rates good to LO

Event Generators (2)

MC@NLO

Kurihara et al.

Signal and main background K factors in H->ZZ*->41 analysis evaluated with MCFM

>Effect of cuts and IFSR small

Reduction of 30-35% in luminosity for discovery with <u>conservative</u> K factor!

Envision further improvements:

 \succ Use Higgs P_T as discriminating variable

> Move to multivariate analysis

Use NLO event generators

>Revisit lepton isolation full simulation study

Will move to high masses

> Role of Higgs's P_T is more important