GRID

The EDG Workload

Management System = v
(EDG release 2.0)

The EDG Workload Management System - n° 1

Contents

GRID

¢ Main differences between release 1.4 and 2.0

¢ Different job types

- Normal jobs
- Interactive jobs %
« Checkpointable jobs

. Parallel jobs %

The EDG Workload Management System - n° 2

Main changes to release 1.4

+ WMS re-factored
¢ dg-job-* commands changed to edg-job-*

¢ slight JDL changes:
= Use GLUE schema

. Interaction with 2.0 data mgmt

+ New features
. Interactive, checkpointable, MPI jobs
. Java and C++ API
- GUI

+ Job state transition simplified

. ‘outputready’ state abolished - job should end with ‘done (success)’

The EDG Workload Management System - n° 3

Job submission

mEEN
% e e,
. L
. 5

a %
"fagguganns®

CE characts
& status

SE characts

& status

(

Job Status

submitted

v

waiting

v

ready

v

scheduled

v

running

v

done

v

cleared

Example of JDL File

[
JobType=" Normal ”;

Executable = “gridTest”;

StdError = “stderr.log”;

StdQut put = “stdout.log”;

| nput Sandbox = {“hone/joda/test/gridTest”};

Qut put Sandbox = {“stderr.log”, “stdout.log”};

| nputData = {“Ifn:green”, “quid:red’},;

Dat aAccessProtocol = “gridftp”;

Requi renents = ot her. d ueHost Oper ati ngSyst emNaneQpSys == “ LI NUX"
&& ot her. d ueCESt at eFr eeCPUs>=4;

Rank = ot her. d ueCEPol i cyMaxCPUTI ne;

1

1 The EDG Workload Management System — n°® 5

Job Submission ﬂ

edg-j ob-submt [-r <res 1d>] [-c <config file>]
[-vo <VO>] [-0 <output file>] <job.)jdl>

-r the job is submitted directly to the computing element identified by
<res_id>

-c the configuration file <config file> is pointed by the UI instead of the
standard configuration file

-vo the Virtual Organization (if user is not happy with the one specified in
the UI configuration file)

-0 the generated edg_jobld is written in the <output file>
Useful for other commands, e.qg.:
edg-j ob-status —i <input file> (or edg_jobld)

-i the status information about edg_jobld contained in the <input file> are
displayed

The EDG Workload Management System — n° 6

Interactive jobs %

¢ Specified setting JobType = “Interactive” in JDL

¢ When an interactive job is executed, a window for the stdin, stdout, stderr
streams is opened

. Possibility to send the stdin to Jobld:
) https: //lxshare0403 cern. ch: 3000 /oyGTLvWanLyyTnulDomIty
the job Standard Output:
. Possibility the have the stderr .

What is your name 7

and stdout of the job when it

iS running

o Possibility to start a window for V.

Standard Error:

the standard streams for a

previously submitted interactive J

job with command edg-job-attach Sending standard mput:

Mass1mo

o | o |

The EDG Workload Management System - n° 7

Job checkpointing %

¢ Checkpointing: saving from time to time job state

. Useful to prevent data loss, due to unexpected failures
. Approach: provide users with a “trivial” logical job checkpointing service
- User can save from time to time the state of the job (defined by the application)
- A job can be restarted from an intermediate (i.e. “previously” saved) job state
o Different than “classical checkpointing (i.e. saving all the information
related to a process: process’s data and stack segments, open files, etc.)

- Very difficult to apply (e.g. problems to save the state of open network
connections)

- Not necessary for many applications

o To submit a checkpointable job
. Code must be instrumented (see next slides)

. JobType=Checkpointable to be specified in JDL

The EDG Workload Management System - n° 8

Job checkpointing example #

int main ()

{

for (int i=event; i <EVMAX; i++)
{ <processevent i>;}

lexit(0); }

The EDG Workload Management System - n°® 9

Job checkpointing example

#Hinclude " checkpointing.h"

int main ()

{ JobState state(JobState::job);
event = state.getlntValue(" first_event");
PFN_of file on_SE = state.getStringValue(" filename");

var_n = state.getBoolValue(" var_n");
< copy file_on_SE locally>;

for (int i=event; i < EVMAX; i++)
{ <processevent i>;

state.saveValue(" first_event", i+1);
< saveintermediate file on a SE>;
state.saveValue(" filename" , PFN of file on_SE);

state.saveValue(" var_n", value n);
state.saveState(); }

ﬁﬁ), I The EDG Workload Management System — n° 10

Job checkpointing example #

#Hinclude " checkpointing.h"

int main ()

{ JobState state(JobState::job);
event = state.getlntValue(" first_event");
PFN_of file on_SE = state.getStringValue(" filename");

var_n = state.getBoolValue(" var_n");
< copy file_on_SE locally>;

for (int i=event; i < EVMAX; i++)
{ <processevent i>;

state.saveValue(" first_event", i+1);
< saveintermediate file on a SE>;
state.saveValue(" filename" , PFN of file on_SE);

state.saveValue(" var_n", value n);
state.saveState(); }

ﬁﬁ); } The EDG Workload Management System - n° 11

Job checkpointing example

#Hinclude " checkpointing.h"

int main ()

{ JobState state(JobState::job);
event = state.getlntValue(" first_event");
PFN_of file on_SE = state.getStringValue(" filename");

var_n = state.getBoolValue(" var_n");
< copy file_on_SE locally>;

for (int i=event; i < EVMAX; i++)
{ <processevent i>;

state.saveValue(" first_event", i+1);
< saveintermediate file on a SE>;
state.saveValue(" filename" , PFN of file on_SE);

state.saveValue(" var_n", value n);
state.saveState(); }

GRID

TeXIT(0))

The EDG Workload Management System — n° 12

Job checkpointing example #

#Hinclude " checkpointing.h"

int main ()

{ JobState state(JobState::job); =
event = state.getlntValue(" first_event");
PFN_of file on_SE = state.getStringValue(" filename"); -

var_n = state.getBool Value(" var_n");
< copy file_ on_SE locally>; S

for (int i=event; i < EVMAX; i++)
{ <processevent i>;

state.saveValue(" first_event", i+1);
< saveintermediate file on a SE>;
state.saveValue(" filename" , PFN of file on_SE);

state.saveValue(" var_n", value n);
state.saveState(); }

ﬁf@), I The EDG Workload Management System — n° 13

Job checkpointing scenarios ﬂ

¢ Scenario 1
- Job submitted to a CE
- When job runs it saves from time to time its state
. Job failure, due to a Grid problems (e.g. CE problem)
- Job resubmitted by the WMS possibly to a different CE

- Job restarts its computation from the last saved state
. > No need to restart from the beginning
. > The computation done till that moment is not lost

¢ Scenario 2
. Job failure, but not detected by the Grid middleware

. User can retrieved a saved state for the job (typically the last one)
. edg-job-get-chkpt —o <state><edg-jobid>
. User resubmits the job, specifying that the job must start from a specific (the
retrieved one) initial state
. edg-job-submit —chkpt <state> <JDL file>

The EDG Workload Management System - n° 14

Submission of parallel jobs ﬂ

¢ Possibility to submit MPI jobs

+ MPICH implementation supported
+ Only parallel jobs inside a single CE can be submitted

¢ Submission of parallel jobs very similar to normal jobs

. Just needed to specify in the JDL:
. JobType= “MPICH"”
. NodeNumber = n;
. The number (n) of requested CPUs

+ Matchmaking

. CE chosen by RB has to have MPICH sw installed, and at least n total
CPUs

. If there are two or more CEs satisfying all the requirements, the one
with the highest number of free CPUs is chosen

The EDG Workload Management System — n° 15

Further information

¢ The EDG User’s Guide
http://marianne.in2p3.fr

¢ EDG WP1 Web site
http://ww.infn.it/workload-grid

In particular WWb User & Adm n Guide and JDL docs

¢ ClassAd

https://ww. cs.w sc. edu/ condor/ cl assad

The EDG Workload Management System — n° 16

