

Magnets and Superconductivity at the LHC

Lucio Rossi Accelerator Technology Div. CERN

A few references

Basic Superconductivity:

- M. Tinkham, *Superconductivity*, Gordon & Breach Publisher
- A.C. Rose-Innes, E.H. Rhoderick, Introduction to Superconductivity, Pergamon Press
- W. Buckel, Superconductivity, Fundamental and Applications, VCH Publisher
- J. Evetts (editor), Coincise Encyclopedia of Magnetic and Superconducting Materials, Pergamon Press
- H.W. Weber High Tc Superconductivity, Plenum Press
- G. Vidali, Superconductivity: the next revolution, Cambridge University Press

Applied Superconductivity

- ✓ M.N. Wilson, Superconducting Magnets, Clarendon Press Oxford
- ✓ K.-H. Mess, P. Schmüser, S. Wolff, Superconducting Accelerator Magnets, World Scientific
- ✓ E.W. Collings, *Applied Superconductivity*, Plenum Press
- ✓ B. Seeber (editor), Handbook of Applied Superconductivity, IoP Publishing
- ✓ L. Dresner, *Stability of Superconductors*, Plenum Publ. Corp.
- ✓ Y. Iwasa, *Case Studies in Superconducting Magnets*, Plenum Publ. Corp.

Previous CERN Academic Training

- 1999 : Ph. Lebrun Superfluid Helium
- 2000 : L. Rossi Superconducting Magnets
- 2002 : D. Larbalestier Superconducting Materials
- 2003 : O. Bruning, L. Rossi, Ph. Lebrun et al. LHC Techniologies

8 July 2003	Lucio Rossi - CERN
High School Teachers	Magnets and Sc at LHC

Content

- HEP \Rightarrow Collider \Rightarrow Magnets \Rightarrow Superconductivity
- Superconductivity: more than zero resistance
- Basic SC magnet design and protection
- The LHC main magnets
- Steering the production by Field Quality
- More than Field Quality: installation QA
- What's beyond the present LHC ? LHC-up !!!

Hadron Colliders

- Very detailed microscope : $\lambda = h/p$ T = 10 TeV $\Rightarrow \lambda \cong 10^{-19}$ m
- Trip back toward the Big Bang: $t_{\mu s} \cong 1/E^2_{GeV}$
 - $T \cong 1$ ps for single particle creation
 - $T \cong 1 \ \mu s$ for collective phenomena QGS (Quark-Gluon Soup)

8 July 2003 High School Teachers

Circular accelerators

HEP (Synchtrons. Colliders)

- We need energy supplied by RF cavities (sometimes SC as well). Beam has to recirculate through them to build up energy: circular or racetrack accelerator concept (based on DIPOLAR FIELD)
- Low Energy Physics (Cyclotrons)

8 July 2003 High School Teachers

We need magnets

- E_{beam} ≈ 0.3 B_{dipole} R [TeV, T, km]
- R_{eff} ≈60-70% L_{TOT}
- Bending for beam guidance : dipoles
- Beam optics: quads & multipoles
- Precise and all identical ≈ 10⁻⁴
- economy for large scale projects (SSC lessons !!!)

8 July 2003 High School Teachers

We need SC magnets!

- Iron dominated magnets limited by iron saturation at 2 T !
- Permanent magnets practically limited in the range 1-2 T
- Copper (or Al) dominated magnets 50-100 T but for ms !!!

Disk of Bitter magnets (up);

pulsed cryogenic magnet for 40 T - 5 ms8 July 2003Lucio Rossi - CERNHigh School TeachersMagnets and Sc at LHC

Superconductivity: zero

- 1908 First helium liquefaction by Heike Kammerlingh-Onnes in the Netherlands.
- 1911 H. Kammerlingh-Onnes discovered superconductivity: zero electrical resistance in a mercury sample (~4 K) (Nobel in 1913)
- 1986 : Bednorz and Muller discovered Cu oxides
- 1988: BSCCO (Bi-Sr-Ca-Cu-O) 110 K
- Hg: record Tc \approx 135 K
- 2001 new class: MgB_2 Tc \approx 30 K

Critical Field

- A Sc is not a simple perfect conductor
- Jsc is limited by magnetic field (and T!!)
- The first Sc materials (pure element) had Bc of 10-100 mT !!
- In the 1950-60s alloys were discovered with Bc of 10-20 T !!!
- Ceramic HTS have Bc 100 T
- MgB₂ has Bc around 15 T

H*-T plane for LTS 40 100 Helium Cooling 😽 Neon liquids Hydrogen 30 (||)Field (T) Nb₃Sn Below the red lines is Alloyed MgB₂ fi usable (\bot) 10 Nb-Ti MgB₂ bulk 0 10 20 30 40 0 Temperature (K)

8 July 2003 High School Teachers Lucio Rossi - CERN Magnets and Sc at LHC

10

More than "simple perfect conductors": type II SC

Flux penetration in the material is in quanta:

 $\Phi = h/2e \cong 2 \ 10^{-15} \text{ Wb}$

Lorentz force : $F_p = -J_c \times B$: to avoid movements and heating it is needed a **pinning** given by defects.

NbTi: $F_{p max} \approx 15 \text{ GN/m}^3 \text{ (or } 15 \text{ N/mm}^3 !!) \Rightarrow J_c \approx 3 \text{ GA/m}^2 (3000 \text{ A/mm}^2) \text{ at } 5 \text{ T}$

Practical Materials

Long journey from material discovery to magnet application

Iwasa table on the long route

Criterion	Number
Superconducting	~ 10,000
$T_c \cong 10 \text{ K}$.and. $B_{c2} \cong 10 \text{ T}$	~ 100
$J_c \cong 1 \text{ GA/m}^2 @ B > 5 \text{ T}$	~ 10
Magnet-grade superconductor	~ 1

Critical surface for Nb₃Sn INFN-LASA, 1999

Niobium-Titanium

Critical surface of NbTi (from Wilson textbook)

Critical current density vs field measured on NbTi multiflamentray wire at 4.22 and 2.17 K

Critical current of best Cu/NbTi with typical **3 T field shift at superfluid helium** (INFN-LASA lab, february 2000)

8 July 2003 High School Teachers

E-J curve

Transition at fixed temperature: $\mathbf{V} = \mathbf{k} \mathbf{I}^{\mathbf{n}}$, so we have to adopt a criterion to define I_{c} .

Electric field. I_c is the current generating an electric field $E_c = 10^{-5} \text{ V/m} \Rightarrow E = E_c (J/J_c)^n$ **Resistivity.** I_c is the current showing an apparent resistivity of $\rho_c = 10^{-14} \Omega \text{m}$. The exponent n, called also n-value or n-index, is related to the homogeneity of the material or of the superconducting properties. For good superconductors n ~30 – 60 or more. Near critical surface, B > 0.9 B_{c2} the n-values drops down to 20 or below.

Superconductors are not stable!

Superconductors are NOT stable against perturbation albeit very small. ΔE of μJ are enough to drive superconductor normal!

Heat capacity drops at low temperature (T<< T_{Debey}) : $C \propto T^3 \Rightarrow \Delta T = \Delta E/\gamma C$. So even small ΔE generates sensible ΔT \Rightarrow operating point of the magnet beyond critical surface \Rightarrow QUENCH

Electrodynamic stability: intimate contact between the superconductor and a good conductivity material.

Adiabatic (or intrinsic)stability: to cure the flux rearrangement that generates heat

Direct cooling : LHe and more HEII are very good coolant, capable to remove heating in milliseconds! Latent heat 10-1000 times that of solid specific heat!

8 July 2003

High School Teachers

AT-MA I_{op} CURRENT T_{LHe} Т I curve Current in Cu **I**_{magnet} All current in sc All current in Cu T_{C} T_C TEMPERATURE ^SCurrent JOULE POWER in sc T_{CS} T_{C} **TEMPERATURE** Lucio Rossi - CERN τU Magnets and Sc at LHC

Wires and cables

multifilamentary wires, where hundreds if not thousands of fine filaments are embedded in a stabilising matrix. Strongly twisted (5-50 mm pitch length) for stability in varying field and for self stability.

 $\leftarrow \text{Atlas Cu/NbTi wire}$

AMS-02 Cu/NbTi/Al \rightarrow

Rutherford cable for \downarrow LHC dipole

Atlas conductor (Rutherford coextr. with pure Al) ↓

8 July 2003 High School Teachers

981047

Lucio Rossi - CERN Magnets and Sc at LHC

1.546+0.025

AI 99.998

Ø0.760^{+0.004}

2.00^{+0.03}

Controlling the Stabilizer content J_c ≈1-2 k/A/T/M/25

J_{stab} same order

Trigger protection in ms time (for a big plant is not trivial !)

Unbalance between coils and magnets due to Cu variation

 \Rightarrow Dangerous internal voltages

Courtesy of D. Leroy

Important point: Cu/Sc is always cost sensitive

8 July 2003 High School Teachers

Magnetizat ion for AT-MAS LHC NbTi

> Due to field imperfection generated by M:

600

Rejection of conductor

Limit in the dynamic range of the magnets

In LHC $D_{fil} = 6-7 \mu m$

High School Teachers

Rutherford cable

Controlling the contact resistance

Courtesy of D. Ritcher 8 July 2003 High School Teachers

Lucio Rossi - CERN Magnets and Sc at LHC

CERN has developed the controlled oxidation method

Coating wire with 0.3-0.5 of SnAg then H.T. cable in air

What are the acceptable limits ?

Too low (< 15-20) gives field errors (ad He consumption

Too high (>100-200) may raise instability or current distribution

Accelerator Magnets Basic Design - I

Intersecting ellipses generate uniform field.

Two intersecting ellipses, rotated of 90°, generate a perfect quadrupole fields:.

All these configurations follow: $J_s = J \cdot \cos(\theta)$, $J_s = J \cdot d \cdot \cos(2\theta)$, ... $B_{y} = \frac{\mu_{0}Jbd}{a+b}$ $B_{y} = \frac{\mu_{0}Jbd}{a+b}$ $H_{y} = \frac{\mu_{0}Jbd}{a+b}$ $H_{y} = \frac{\mu_{0}J(a-b)}{a+b}$

In practice the above current distributions are approximate, so the field contains also higher order harmonics (see later). It can be shown that if the $cos(n\theta)$ is approximate by step function,

there is a "magic" angle that makes nil the first higher order harmonics.

8 July 2003 High School Teachers

Accelerator Magnets Basic Design - II

Approximation of $\cos\theta$ with coil blocks (left) and multiple shells (centre) and of intersecting ellipses (from Wilson book).

8 July 2003 High School Teachers

Accelerator Magnets: Basic Design -

J_{overall} ≈ 500 A/mm² ! e.m. forces are not kept by Conductors but tend to torn apart the winding.

High School Teachers

Magnets and Sc at LHC

CERN AC/DI/MM - 06-2001

MQY wide aperture quadrupole

70 mm ID coil G = 160 T/m at 4.5 K I = 3620 A E = 141 kJ/m/aperture $L_{mag} = 3.4$

- Four-layer, graded shell coil.
- Free standing collars, fully supporting the forces.
- Two-in-one iron yoke.

8 July 2003 High School Teachers

quadrupoles developed CERN-Oxford Inst he LHC RS (MQY)

conductor (Rutherford

le)

designed with the ROXIE code developed at CERN for the LHC (S. Russenschuck)

8 July 2003 High School Teachers Lucio Rossi - CERN Magnets and Sc at LHC

Conductor position optimization:

Control of harmonics Balance of margin among blocks

Stable against inevitable errors

Minimum shear among conductors

Balance between T margin of inner/outer

No quench anymore in straight part

The basic relation: B vs

8 July 2003 High School Teachers Lucio Rossi - CERN Magnets and Sc at LHC 31

LHC MB X-sect: Cu wedges

AT-MAS Precise at ±20 μm

Used to steer production toward correct Field Quality

In LHC we have changed them during production.

Effect in 2002.

~35 CM old Xsect.

LHC MB X-sect: Insulation and Interlayer

Rutherford Cables Insulation

-2 layers of Apical 200 AV insulation -1 layer Pixeo to glue cables together at 185°C (-0,+5 critical) **Ground isolation** Four layers 125AH

Polyimmide insulation

Around cable and around coils

Important elements are dimensions, ±3% of thickness, and creep (Apical creeps less than kapton)

Inter layer To allow HEII to flow

8 July 2003 High School Teachers

LHC MB X-sect: insulated CBT

8 July 2003 High School Teachers

LHC MB X-sect: Quench Heater

8 July 2003 High School Teachers Lucio Rossi - CERN Magnets and Sc at LHC

These strips has to be fired in 10 ms if a quench happens!

They get hot and heat diffuse from strip to coils in about 20-40 ms

It's one of the main delicate element (metallic strip under strong stress, the foils must be thin to favor heat diffusion)

LHC MB X-sect: Collars

One of the key element of a magnet:

It controls prestress (mechanic) and Field Quality

Collars and collaring are the main controllers of the final coil shape

LHC MB X-sect: magnetic insert

Introduced to ease the mechanical assembly

It serves for FQ

By tapering we cured unwanted quadrupole and octupole components

LHC MB X-sect: yoke laminations

15% field increase (but big gain in protection)

If saturates affect FQ (sextupole)

Trim of magnetic length

38

LHC MB X-sect: Bus Bars & fillers AT-MAS

160 km of main **BusBars!!** We provide: -technology -SC 02 cables -Polyimmide foils and tapes

TOO DO OD

8 July 2003 **High School Teachers**

LHC MB X-sect: Shrinking cylinder and support

LHC MB X-sect: Copper HX Saturated low pressure HEII

Cu tubes (bare)

- Then all working at CERN
- -machining
- -vacuum brazing
- e-beam welding
- -Cleaning

Copper Heat Exchange Tubes

By heat exchange, all He inside voids (included coils!), are cooled from 4.2 K down to 1.9 K

LHC MB X-sect: beam

screen

Beam Screen

AT-MAS

Inserted at CERN just before insertion in the tunnel

8 July 2003 High School Teachers

LHC MB - end part CBTs and Yoke

8 July 2003 High School Teachers

LHC MB -end part end plate

8 July 2003 High School Teachers

LHC MB-end part Bus Bars postioning

8 July 2003 High School Teachers

LHC MB -end part Shrinking cyilinder

8 July 2003 High School Teachers

LHC Main Dipole -end part Cu HXT

8 July 2003 High School Teachers

Corrector Magnets (spool pieces)

Assembly in CMAs is purely mechanical

(tolerances of B axis wrt mech. frame given by supplier

8 July 2003 High School Teachers

LHC Main Dipole -end part End covers

8 July 2003 High School Teachers

LHC Main Dipole -end part: « Cold foot »

8 July 2003 High School Teachers

LHC Main Dipole -end part Bellows and N-line

8 July 2003 High School Teachers

Interconnection between two SC magnets 20 super

6 superconducting bus bars 13 kA for B, QD, QF quadrupole

diode

13 kA Protection

20 superconducting bus bars 600 A for corrector magnets (minimise dipole field harmonics)

To be connected:

- Beam tubes
- Pipes for helium
- Cryostat
- Thermal shields
- Vacuum vessel
- Superconducting cables

42 sc bus bars 600 A for corrector magnets (chromaticity, tune, etc....) + 12 sc bus bars for 6 kA (special quadrupoles)

Critical Process Winding-Curing-Coil

x

- Coils are cured under press
- Then measured all along 15 m
- Then collared with shims
- Shims influence also prestress and then coil movements (quench)
- Shift of radius of tens of micron as well deformation can easily drive harmonics out of tolerance

High School Teachers

ssi - CERN Magnets and Sc at LHC

Steering production (and check errors) through Field

AT-MAS

To get it right we need model that predict position and deformation at the level of 10-20 micron

57

8 July 2003 High School Teachers

Laser tracker (Leica)to achieve geometry

Measuring method at Industry

8 July 2003 High School Teachers Lucio Rossi - CERN Magnets and Sc at LHC 60

Snapshot at industry

High School Teachers

<image>

cio Rossi - CERIN Magnets and Sc at LHC

UΙ

longitudinal welding

- Pre-developed at CERN
- Installed directly CMAs
- Two weldings synchronized
- Root welding STT: high quality very sophisticated control, a world PRIMA for this conditions and austenitic steel
- Problem on the press, now almost over : still quality of welding
- Each CM leak tested 26 bar !!!

High School Teachers

62

Logistic and QA: the dark side of the work

- We'll put some 50,000 tons in the tunnel
- We'll move some 150,000 tons around Europe, in four years.
 ~10000 TIR, ⇒ 10 TIR/days in average! ⇒ Paperwork !
- Timing! Example of low carbon iron (yoke)
- QA : The MTF Manufacturing Test Folder Full description of the magnets: some 500 entry ! Based on ABS. It assures the full and permanent traceability Contains also all NC and components CoC

Magnet performance and Training Curve

Temperature and enthalpy margins

The first action to take is to have a reasonable energy margin, larger than the expected energy release, to make unlikely to pass the critical surface: but the specific heat of solids are pretty low near LHe and we can rely only on $\Delta T \approx 1-2$ K

High School Teachers

Magnets and Sc at LHC

Point Disturbances : MP

Energy density is not the only criterion, since most of the perturbations are localized.

MPZ : the Minimum Propagating Zone

with a simple balance between power dissipated in the normal zone and heat conducted along the cable we found:

$$l = \frac{2k(T_{cs} - T_{op})}{\rho J_c^2}$$

If there is no stabiliser, only NbTi, we see that $l \cong 1 \ \mu m \Rightarrow \Delta H \sim 1 \ nJ$ only !!

Clearly a stabiliser is needed, with good conductivities, both thermal and electric : $k \rho = L_0 T$ Heat is conducted away also the transverse direction, i.e. through insulation

If the normal zone created by the perturbation is larger, there is the thermal runaway: **quench.**

8 July 2003 High School Teachers

PROTECTION

A superconducting magnet, whatever the stability margin, **it will quench**. And magnet integrity has to be preserved.

When working at current density like in the LHC dipoles, where dissipation per unit volume following a quench is $\rho J_{Cu}^2 \cong 6 \ 10^{-10} \ \Omega m \ 10^{18} \ A/m^2 = 600 \ MW/m^3$

Excessive voltage rise \Rightarrow insulation breakdown.

Temperature growth \Rightarrow **melting or serious trouble to insulators and conductor** Temperature gradients \Rightarrow excessive stress with subsequent de-training.

Impressive damage caused by a short circuit developed during a quench in a LHC dipole protype8 July 2003Lucio Rossi - CERNHigh School TeachersMagnets and Sc at LHC

Hot Spot Temperature

Let's suppose that heat is coming only by Joule effect and conduction is not significant

$$J^{2}(t)\rho(T)dt = \gamma C(T)dT \qquad \int_{0}^{\infty} J^{2}(t)dt = \int_{T_{op}}^{T_{m}} \frac{\gamma C(T)}{\rho(T)}dT \qquad J^{2}_{0}T_{d} = U(T_{m}) \qquad \text{MIITs}$$

The function U(T) is a computable a priori, based only on material properties. If the magnet is discharged on an external –dumping- resistors, R_D , $T_d=0.5 \cdot L_{mag}/R_D$.

The goal is to speed up the quench propagation by any means, to avoid too high hot spots: 1) **Heater : activated in 20 ms !!**

2) Benefit of quench-back

This goes against having LHe inside the coils (i.e. is against stability)' High School Teachers

Protection scheme for a dipole string

LHC protection scheme (courtesy of F. Rodriguez Mateos, CERN)

8 July 2003 High School Teachers Lucio Rossi - CERN Magnets and Sc at LHC 69

Quench today : first cool down

CD

AT-MAS

The ultimate proof for accelerators:memory

High School Teachers

Magnets and Sc at LHC

What's after LHC ? Luminosity upgrade

An then ? After 2015 ? A possible energy upgrade! With new typed of magnets

8 July 2003 High School Teachers Lucio Rossi - CERN Magnets and Sc at LHC

Technology: beautiful, when well done !

Thanks for the attention!

Magnets and Sc at LHC