

LHC Computing re-costing for 2006-2010 for the CERN T0/T1 center

26. Juni 2003

Bernd Panzer-Steindel, CERN/IT

1

The costing exercise focuses on the implementation of the LHC computing fabric for the CERN T0 + T1 center. This covers the phase 2 of the LCG project (2006-2008) and the following 2 years (2009-2010) of operation.

The following 6 areas are covered :

- CPU Resources
- Disk Storage
- **Tape Storage**
- Local Network LAN
- Outside Network WAN
- **System Administration**

more details : http://lcg-computing-fabric.web.cern.ch/LCG-ComputingFabric/lhc_computing_cost_re-calculation.htm

October	1999	PASTA II
➢February	2001	Report of the steering group of the LHC computing review 'Hoffman' Report
February	2002	Task Force 1 Report
➢October	2002	PASTA III
►March	2003	Re-costing exercise

To estimate the cost and it's evolution over the years several input parameters need to be taken into account :

- **Technology evolution (PASTA)**
- Today's cost <u>reference points</u> of key components (e.g. 2.4 GHz processor, 120 GB disk , etc.)
- The prediction for the future price development (<u>slope</u>) of the components
- Estimation of the needed capacity and resources in 2006 and onwards from the experiments
- The computing architecture and model

The requirements are defined by the key experiment parameters like trigger rates and event sizes

Some changes and refinements due to :

- \rightarrow Much more experience with data challenges and productions
- \rightarrow Better estimates and models
- → Different strategies e.g. ATLAS will keep one copy of the raw data at CERN while CMS will export the copy to the Tier 1 centers
- \rightarrow Optimized model for the 'staging' of the equipment 2006-2008

Architecture (I)

- Still focusing on the INTEL 'deskside' PC
- Have to consider additional costs :
 - \rightarrow infrastructure (racks, cables, console, etc.)
 - \rightarrow efficiency (batch system, I/O wait, etc.)
 - \rightarrow market developments = difference between simple boxes and

Market

servers

According to Gartner/Dataquest, the Notebook share in the PC market (Q1 2003) was 33 %. Intel claims that this year the sale of Notebooks will reach 40 million units.

Power

The power consumption per produced SI2000 is still constant. There are plans (INTEL, TeraHertz) to reduce this in the future, but not convincing yet.

 \rightarrow consequences for the upgrade to 2MW power and cooling in the center

Processor reference points and slopes from 'street' prices, the actual purchases in IT during the last 3 years and PASTA III

Processor price/performance evolution

Year	Resource [million SI2000]	Cost [million CHF]
2005		
2006	3.7	3.9
2007	8.2	3.2
2008	19.1	5.1
2009	25.4	2.0
2010	33.8	2.5

Extra costs :

LCG

 \rightarrow a few disks are attached to a server, server costs

 \rightarrow efficiency of space usage (OS/FS overheads,etc.)

10% high-end storage = more expensive (x4) \rightarrow databases

 \rightarrow infrastructure (racks, console, etc.)

Have to take into account the need for about

Disk reference points and slopes from 'street' prices , the actual purchases in IT during the last 3 years and PASTA III

Disk price/performance evolution

Year	Resource [PB]	Cost [million CHF]
2005		
2006	1.0	5.1
2007	2.1	3.4
2008	3.8	3.5
2009	5.0	1.6
2010	6.7	1.4

Tape Storage (I)

- **Tape access performance is averaged over the year**
 - → needs dedicated, guaranteed resources during CDR of heavy-ion period
- **Tape storage infrastructure :**
 - \rightarrow number of silos for the tapes
 - \rightarrow new building when the number of silos > 16
 - \rightarrow maintenance costs per year
- □ Technology lifetime is about 5 years
 → replacement of equipment and re-copy of tapes
 (considerable expenses)
 → timing of the technology change is crucial

Tape Storage performance infrastructure (tape drives, tape server, etc.)

Year	Resource [GB/s]	Cost [million CHF]
2005		
2006	1.1	1.2
2007	2.3	3.3
2008	3.9	3.3
2009	4.4	0.7
2010	4.4	0.0

Tape storage : tape media, silos, building, replacement

Year	Resource [PB] (total available tape capacity)	Cost [million CHF]
2005		
2006	6.0	5.3
2007	13.8	8.3
2008	25.1	6.5
2009	35.5	6.4
2010	48.4	10.6

Network Infrastructure (I)

- Network architecture based on several Ethernet levels in a hierarchical structure
- □ Implementation staged between 2005 and 2007 : 20%-50%-100%
- Designed for a 8000 node fabric
- completely new backbone based on 10GE equipment, still some uncertainties in this market for high end routers

Year	Resource [GB/s]	Cost [million CHF]
2005	56	2.2
2006	140	2.2
2007	280	4.3
2008	280	0.9
2009	280	0.9
2010	420	1.6

- The <u>previous</u> approached was based on the model of outsourcing the system administration part and was costed at about 1000 SFr per node.
- The new model is based on an in-sourced model, where in the first years 7 administrators and 2 managers are responsible for the sysadmin part, increasing to 12 administrators later
- This new model seems to be more appropriate after the experience from the last years and the fact that the amount of anticipated nodes is 'only' in the range of ~4000. This reduces the cost to about 400 SFR per node

Year	Resource [FTE]	Cost [million CHF]
2005	7+2	1
2006	7+2	1
2007	7+2	1
2008	12+2	1.5
2009	12+2	1.5
2010	12+2	1.5

26. Juni 2003

Bernd Panzer-Steindel, CERN/IT

- Optimistically we should have access to 10 GBit WAN connections already in 2004
- **The move to 40 GBit is much more unclear**
- → The network providers are still undergoing frequent 'changes' (mergers, chapter 11)
- \rightarrow Large over-capacity available
- → Todays 40 GBit equipment is very expensive

Year	Resource [Gbits/s]	Cost [million CHF]
2005	2.5	1.0
2006	10	2.0
2007	10	2.0
2008	X *10	2.0
2009	40	2.0
2010	40	2.0

All units in [million CHF]

	Old	New	New- Old	Old	New	New - Old
Resource	2006-08	2006-08	2006-08	2009-10	2009-10	2009-10
CPU+LAN	17.7	19.5	1.8	6.3	6.8	0.5
Disk	6.3	11.9	5.6	2.2	2.9	0.7
Таре	22.5.	27.8	5.3	19.2	17.6	-1.6
WAN	11.4	6.0	- 4.4	6.8	4.0	-2.8
Sysadmin	7.9	3.5	- 4.4	6.6	3.0	-3.6
SUM	65.8	68.7	2.9	41.1	34.3	-6.8
Budget		60.0			34.0	

* A bug in the original paper is here corrected

26. Juni 2003

Bernd Panzer-Steindel, CERN/IT

Resource changes

Resource	2006-08	change 2006-08	2009-10	change 2009-10
CPU [MSI2K]	19	12 %	34	19 %
Disk [PB]	3.8	79 %	6.7	58 %
Tape [PB]	25	-1 %	48	-1 %

We are in the process of providing a detailed description and explanation for the resource requirement changes. This will be appended to the note describing the calculations and the used parameters in the re-costing Excel sheets.

- Better than anticipated price developments for the components
- Not technology changes, but market changes are the most worrying factors
- Exercise needs to be repeated regularly (at least once per year)
- Very fruitful and constructive collaboration between IT and the Experiments