
Profiling CMS production

Giulio Eulisse

Northeaster University, Boston (MA), U.S.A.



oprofile

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –2–



oprofile Features

• Non intrusive.

• Low overhead (with proper sampling rates)

• Can profile different quantities, other then raw speed: cache misses, mispre-

dicted branches, memory accesses.

• Can profile kernel as well.

• Will be part of next stable kernel (already in 2.5.x)

• Cross platform: ports to IA-64, x86-64, Alpha, PA-RISC, sparc64, and ppc64

at various stage of completion

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –3–



oprofile How it works

• Modern CPU have internal counters for various profiling related information:

• Number of operation performed by different operational units.

• Mispredicted branches.

• Cache and memory access.

• The kernel can instruct the CPU so that a NMI is generated whenever one of

the counter overflows a certain user decided level.

• Information on where (in which symbol) the program counter was when the

NMI was thrown is then saved in some private memory area by the kernel

module.

• Whenever the user requests it (by writing to /proc/sys/dev/oprofile/dump

a userspace daemon fetches the information from kernel space and dumps

them to disk in /var/lib/oprofile/samples/.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –4–



oprofile IGUANA GUI

• IGUANA, since version 4.2.2, provides a GUI to oprofile commandline tools.

• The GUI is logically divided in two parts. A backend which fetches the infor-

mation using the standard oprofile tools and a QT frontend. This was done

envisaging the possibility of allowing remote operations in which the backend

and the frontend are not run on the same machine.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –5–



oprofile Components as provided by oprofile.sf.net

• A kernel module (oprofile)

• An userspace daemon (oprofiled). (run as root)

• Several userspace tools:

• opcontrol (needs sudo)

• op_time (run by users)

• oprofpp (run by users)

• op_to_source (run by users )

• op_help (run by users)

• A QT GUI for configuration.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –6–



oprofile Used paths

Oprofile requires the presence of some paths:

• /proc/sys/dev/oprofile/: must be readable by users and user must

be able to write to /proc/sys/dev/oprofile/dump .

• /var/lib/oprofile/: must be writeable by the oprofile daemon and

readable by users.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –7–



oprofile requested ./configure features

• Please build with Qt support (not necessary, but eases the configuration).

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –8–



oprofile Proposed use for the next 2 months

• We wish to do a global performance analysis by profiling a fraction of the

production.

• Our immediate wishes would be satisfied by about 10 batch nodes with opro-

file installed.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –9–



oprofile Possible extensions

• Monitoring: it would be nice to run it for a few hours a day on random machine

to look for misbehaviour.

• On demand profiling: it would be nice to start the profiling remotely on the

machine of their choice and profile their own jobs.

Your input is very welcomed on such topics.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –10–



oprofile Proposed implementation
The GUI is already logically divided in to two parts: the backend would run

(as user) on the cluster node collecting profiling data. The frontend, most likely

running on developer/user machine, gets and displays the data, either at runtime,

but also offline. How the two should communicate is an open question and your

input is welcome:

• Push mode? The GUI backend would be started as a common batch job,

collect all the informations and send them to a server machine which provides

access to the profiling information via HTTP or similar interface.

• Pros: very low security concerns.

• Cons: non interactive.

• Pull mode? Maybe via python remote objects/clarens/custom HTTP server?

• Pros: interactive.

• Cons: a (non root) daemon running on the target machine.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –11–



oprofile Your input is very welcomed

Especially for the following questions:

• What to profile (besides raw speed)?

• How to implement the communication between GUI backend and frontend?

• Push, pull or both?

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –12–



oprofile Reference

oprofile WEB site:

http://oprofile.sf.net

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –13–

http://oprofile.sf.net

