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oprofile Features

• Non intrusive.

• Low overhead (with proper sampling rates)

• Can profile different quantities, other then raw speed: cache misses, mispre-

dicted branches, memory accesses.

• Can profile kernel as well.

• Will be part of next stable kernel (already in 2.5.x)

• Cross platform: ports to IA-64, x86-64, Alpha, PA-RISC, sparc64, and ppc64

at various stage of completion
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oprofile How it works

• Modern CPU have internal counters for various profiling related information:

• Number of operation performed by different operational units.

• Mispredicted branches.

• Cache and memory access.

• The kernel can instruct the CPU so that a NMI is generated whenever one of

the counter overflows a certain user decided level.

• Information on where (in which symbol) the program counter was when the

NMI was thrown is then saved in some private memory area by the kernel

module.

• Whenever the user requests it (by writing to /proc/sys/dev/oprofile/dump

a userspace daemon fetches the information from kernel space and dumps

them to disk in /var/lib/oprofile/samples/.
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oprofile IGUANA GUI

• IGUANA, since version 4.2.2, provides a GUI to oprofile commandline tools.

• The GUI is logically divided in two parts. A backend which fetches the infor-

mation using the standard oprofile tools and a QT frontend. This was done

envisaging the possibility of allowing remote operations in which the backend

and the frontend are not run on the same machine.
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oprofile Components as provided by oprofile.sf.net

• A kernel module (oprofile)

• An userspace daemon (oprofiled). (run as root)

• Several userspace tools:

• opcontrol (needs sudo)

• op_time (run by users)

• oprofpp (run by users)

• op_to_source (run by users )

• op_help (run by users)

• A QT GUI for configuration.
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oprofile Used paths

Oprofile requires the presence of some paths:

• /proc/sys/dev/oprofile/: must be readable by users and user must

be able to write to /proc/sys/dev/oprofile/dump .

• /var/lib/oprofile/: must be writeable by the oprofile daemon and

readable by users.
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oprofile requested ./configure features

• Please build with Qt support (not necessary, but eases the configuration).
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oprofile Proposed use for the next 2 months

• We wish to do a global performance analysis by profiling a fraction of the

production.

• Our immediate wishes would be satisfied by about 10 batch nodes with opro-

file installed.
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oprofile Possible extensions

• Monitoring: it would be nice to run it for a few hours a day on random machine

to look for misbehaviour.

• On demand profiling: it would be nice to start the profiling remotely on the

machine of their choice and profile their own jobs.

Your input is very welcomed on such topics.
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oprofile Proposed implementation
The GUI is already logically divided in to two parts: the backend would run

(as user) on the cluster node collecting profiling data. The frontend, most likely

running on developer/user machine, gets and displays the data, either at runtime,

but also offline. How the two should communicate is an open question and your

input is welcome:

• Push mode? The GUI backend would be started as a common batch job,

collect all the informations and send them to a server machine which provides

access to the profiling information via HTTP or similar interface.

• Pros: very low security concerns.

• Cons: non interactive.

• Pull mode? Maybe via python remote objects/clarens/custom HTTP server?

• Pros: interactive.

• Cons: a (non root) daemon running on the target machine.
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oprofile Your input is very welcomed

Especially for the following questions:

• What to profile (besides raw speed)?

• How to implement the communication between GUI backend and frontend?

• Push, pull or both?
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oprofile Reference

oprofile WEB site:

http://oprofile.sf.net
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