
Profiling memory allocations

Giulio Eulisse

Northeaster University, Boston (MA), U.S.A.

Profiling memory allocations Anonymous

There are three kinds of algorithms:

• those which are slow

• those which take a large amount of memory

• most of them though achieve to do both

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –2–

Profiling memory allocations Target

Besides raw speed we are interested in profiling memory allocations which in

some cases is even more important than computational cost.

If you don’t have CPU time, you can wait, if you don’t have RAM you have to buy

it.

We are interested in profiling:

• unintrusively, we don’t want to modify our target code

• with low overhead, both computationally and from memory footpring point of

view

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –3–

Profiling memory allocations MemProfLib

MemProfLib, as found in IGUANA >4.2.3 is a little tool, four-hand-coded with

Lassi Tuura, which uses glibc features to keep track of all the memory allocation

performed by a program.

As requested:

• Low overhead (we profiled both IGUANA and OSCAR).

• Not very memory hungry.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –4–

Profiling memory allocations How it works

glibc comes handy to do this kind of profiling. It provides a way to hook into

memory related primitives:

• __malloc_hook

• __realloc_hook

• __free_hook

• __memalign_hook

They are called on the call of associated C fuctions.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –5–

Profiling memory allocations How it works

• The library implements the malloc hooks.

• It is loaded before everything else via LD_PRELOAD mechanism.

• Whenever a malloc() call occurs, it gets the point in which it happened

(via backtrace()), and stores all the information in a tree structure.

• The tree is dumped to a gprof style text file.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –6–

Profiling memory allocations Making it cross platform

• __malloc_hooks are glibc only.

• However most dlsym() implementations support RTLD_NEXT option, which

allows for generic wrapping of system calls. Using it in place of __malloc_hook

would result in FreeBSD, Solaris portability.

• Similar tricks can be done on Windows. See (MSJ Feb 2002 ”Under the

hood”).

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –7–

Profiling memory allocations Additional features

Since oprofile does not provide call-tree structure, we decided to add a JProf

like profiling option to the profiler.

• It uses SIG_ALARM (SIG_PROF, actually) to do the sampling.

• It uses LD_PRELOAD.

• Same kind of output.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –8–

Profiling memory allocations TODO

• Multi-thread support (we need to wrap clone()).

• Make it glibc independent.

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –9–

Profiling memory allocations Sample output

gprof style output:

492651028 465775672 1/1 G4SteppingManager::InvokePSDIP(...) (libG4tracking.so) [631]

[0] 465775672 465750904 1 G4Transportation::PostStepDoIt(...) (libG4transportation.so)

1032 1032 1/1 G4Allocator< ... >::MallocSingle() (libG4tracking.so) [1912]

23736 23736 1/1 G4Navigator::LocateGlobalPointAndSetup(...) (libG4volumes.so) [1269]

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –10–

Profiling memory allocations Reference

• JPROF:

http://www.mozilla.org/performance/jprof.html

• MemProfLib temporary web-page:

http://eulisse.web.cern.ch/eulisse/oprofile/

Giulio Eulisse, Northeaster University, Boston (MA), U.S.A. –11–

http://www.mozilla.org/performance/jprof.html
http://eulisse.web.cern.ch/eulisse/oprofile/

