Common simulation framework

Andrea Dell'Acqua - CERN EP/SFT

+

Rene Brun - CERN EP/SFT Witold Pokorski - CERN EP/LBC Maya Stavrianakou - CERN EP/CMC

What is it?

- An attempt to answer a request by RTAG 10
 - Common project to address general simulation infrastructure and services
 - Minimize duplication of work, waste of effort and divergence
 - Provide a model for collaboration between experiments and simulation projects
 - Use different simulation engines transparently in the context of the experiment software base
- In fact a very efficient way of exchanging information and profiting of each other's results and experience

The simulation "engines"

Geant3

- For years the only package used for extensive and detailed detector simulation
- Now used as "reference", but it does not really fit in the plans of any LHC collaboration

Geant4

- Developed for detector simulation at the LHC
- Gaining momentum as the user community grows in size

Fluka

- For years THE reference for background calculations and radiation studies
- Growing interest to use it for overall detector simulation studies

The experiments

- ATLAS, CMS and LHCb are completing their move to Geant4
 - Physics validation studies, optimization, performance
 - Feed back to Geant4 itself
 - Planning for big production exercises soon (CMS) or later this year
 - Interest in Fluka as alternative engine (don't want two different simulation streams)
- ALICE's target is Fluka
 - ◆ Not a big interest in G4
 - Develop a detector simulation framework where different simulation engines can used from the same application

The Virtual Monte Carlo

- Provides an abstract interface to detector simulation package
- Concrete implementations dealing with the existing packages (Geant3, Geant4, Fluka)
- Actual simulation engine selected at run time
- Abstract interfaces currently available in (and distributed with) ROOT
- Geant3 currently favored over Geant4 in the concrete implementation, interface to Fluka currently under development in ALICE

A detector simulation perspective

The common simulation framework sub-project

- Aim: to provide a "service" for each yellow box (application domain)
- ◆ To be integrated within SEAL
- To be built on top of existing SW, as much as possible
- The glue for connecting the "services" is provided by the framework, as well as basic services (e.g. persistency)

Revised Overall Simulation Environment

What are we doing?

- Examining requirements, looking for common discussion ground
- "Designing" high level services, starting from existing applications
- Learning about SCRAM
- Inquiring about SEAL and its functionality
 - We are actually happy to finally have something to play with
- Toying with the VMC
- Setting up some prototype...

The hottest - the Geometry Box

- Each experiment has developed/is developing its own solution
 - ◆ ATLAS, CMS and LHCb hide the Geant4 geometry construction behind a "Detector Description" layer+ automatic builders
 - ◆ ALICE use the ROOT geometry package
- There does not seem to be a different solution than supporting all of them
- Can we converge on 1 geometry package which satisfies all needs?
 - ◆ All "engines" must speak the same geometry language

Geometry from the G4 viepoint

In principle ATLAS, CMS and LHCb have already "access" to Fluka G4 geometry package FluGG interface Geant4 "engine" Fluka "engine"

Geometry from the VMC viewpoint

The most urgent - MC truth

- Generic solution needed for
 - Storing the actual event being simulated
 - Storing secondaries of interest (decay products)
 - establishing association between hits and tracks
- Different experiments, different solutions
 - From simple "ad hoc" solutions to complete re-implementation of the particle stack
- Different engines require different strategies

Future steps

- Evaluation of the VMC
 - Does it satisfy all requirements?
 - Does it fit into the proposed SW infrastructure?
 - Help implementing the "missing" link?
- Prototype implementation
 - Close collaboration with the Physics Validation project to provide them with a working infrastructure for comparisons/tests with different engines