

Module 1: Basic Elements in Reliability Engineering R&S Training Course CERN, February 2002

3

Content:

- Short R&S History
- Some Basic Terms
- A few Definitions and Formalisms
- From Components to Systems
- Important Methods
- Common Cause Failures
- Human Factor Issues
- Types of Uncertainties

Module 1: Some Basic Terms						
Reliability:						

The ability of an item to operate under designated operating conditions for a designated period of time or number of cycles.

R&S Training Course CERN, February 2002

5

Remark: The ability of an item can be designated through a probability, or can be designated deterministic

• Availability:

The probability that an item will be operational at a given time Remark: Mathematically the Availability of an item is a measure of the fraction of time that the item is in operating conditions in relation to total or calendar time

Module 1: Some Basic Terms	R&S Training Course CERN, February 2002
• Maintainability: The probability that a given active maint item under given conditions of use can be stated time interval when the maintenar stated conditions and using stated proce (IEC 60050)1)	tenance action, for an be carried out within a nce is performed under edures and resources
Remark: probabilistic definition	
Safety:	
Freedom from unacceptable risk of harr	n
Remark: very vague definition	
• RAMS: An acronym meaning a combin Availability, Maintainability and Safety	nation of Reliability,

Module 1: A few Definitions and Formalisms	R&S Training Course CERN, February 2002
For non-repaired items:	
If observed failure data are available for n non-repaired ite rate, then the estimated value of λ is given by $\lambda = n / \sum_{n=1}^{n} TTF.$	ems with constant failure
where TTF_i is time to failure of item i	
Example: For 10 non-repaired items with a constant failure rate, the time to failures of all the items is 2 years. Hence	observed total operating
$\lambda = 10/2 = 5$ failures per year	
	1:

Module 1: A few Definitions and Formalisms	R&S Training Course CERN, February 2002			
For repaired items with zero time to restoration the reliability function is given				
$R(t_{1},t_{2}) = R(t_{2}) + \int_{0}^{t_{1}} R(t_{2}-t) \cdot z(t)dt$				
where $R(t_2)$, represents the probability of survival to time t_2 , and the second term represents the probability of failing at time immediately restoration, surviving to time t_2	e t(t< t ₁) and, after			
z(t) is the instantaneous failure intensity (renewal density) approximately the (unconditional) probability that a failure (t, t + Δ t)	of the item, i.e. z(t)dt is of the item occurs during			
Example: For a repaired items with a constant failure rate of one fail and a required time of operation without failure of six mon by	ures per operating year hs, the reliability is given			
$R(t, t + 6) = exp(-1 \times 6/12) = 0,6065$		14		

Module 1: A few Definitions and Formalisms	R&S Training Course CERN, February 2002
Consider:	
If a repaired item with zero time to restoration opera the times to failure are exponentially distributed thre equal	ates continuously, and if se often use terms are
$MTTF = MTBF = MUT = 1/\lambda$	
MTTF Mean Time To FailureMTBF Mean Time between FailureMUT Mean Uptime	
	16

Module 1: CERN, February 2002 A few Definitions and Formalisms Repaired items with non-zero time to restoration The reliability of a repaired item with non-zero time to restoration for the time interval (t_1, t_2) may be written as $R(t_1, t_2) = R(t_2) + \int_{0}^{t_1} R(t_2 - t)v(t)dt$ where the first term $R(t_2)$ represents the probability of survival to time t_2 , and the second term represents the probability of restoration (after a failure) at time $t(t < t_1)$, and surviving to time t_2 v(t) is the instantaneous restoration intensity of the item When the times to failure are exponentially distributed, then $\mathsf{R}(\mathsf{t}_1, \mathsf{t}_2) = \mathsf{A}(\mathsf{t}_1)\mathsf{exp}(-\lambda \cdot (\mathsf{t}_2 - \mathsf{t}_1))$ where $A(t_1)$ is the instantaneous availability at time t_1 and $\lim R(t, t + x) = [MTTF / (MTTF + MTTR)] \exp(-\lambda t)$

R&S Training Course

17

R&S Training Course Module 1: CERN, February 2002 A few Definitions and Formalisms Repaired items with non-zero time to restoration When times to failure and times to restoration are exponentially distributed, then, using either Markov techniques or the Laplace transformation, the following expression is obtained: $R(t_1, t_2) = (\mu_R/(\lambda + \mu_R) + \lambda/(\lambda + \mu_R)exp[-(\lambda + \mu_R) t_1]exp[-\lambda \cdot (t_1 - t_2)]$ and $\lim R(t, t + x) = \mu_R / (\lambda + \mu_R) \exp(-\lambda x)$ Example: For a item with $\lambda = 2$ failures per operating year and a restoration rate of $\mu_{R} = 10$ restorations per (restoration) year, and x = 1/4 $\lim R(t, t + 1/4) = 10/12 \exp(-2 \times 1/4) = 0,505$ 18

Module 1: A few Definitions and Formalisms	R&S Training Course CERN, February 2002
Additional Formulas see e.g. in the followi (random sample of useful bool	ing Textbooks ks)
Birolini, A., Quality and Reliability of Technical Systems 2 nd Edition; ISBN 3-540-63310-3	tems; Springer 1997
 Hoyland A., & Rausand, M., System Reliability Theory Sons; 1994; ISBN 0-471-59397-4 	; John Wiley &
 Modarres, M., Reliability and Risk Analysis; Marcel De 1993, ISBN 0-8247-8958-X 	kker, Inc. NY;
 Schrüfer, E., Zuverlässigkeit von Meß- und Automati tungen; Hanser Verlag, 1984, ISBN 3-4 	isierungseinrich- 46-14190-1
Knezevic, J., Systems Maintainability, Chapman & Ha ISBN 0 412 80270 8	all, 1997,
 Lipschutz, S., Probability, Schaums Outline Series, Mo Company, 1965, ISBN 07-037982-3 	cGraw-Hill Book
 IEC 61703, Ed 1: Mathematical Expressions for Reliab Maintainability and Maintenance Support http://www.dke.de 	pility, Availability, prt Terms, 1999
	24

Module 1: A few Definitions and Formalisms	R&S Training Course CERN, February 2002
Maintainability Measures	
Probability of Task Completion:	
$PTC_{DMT} = P(DMT \le T_{st}) = \int_{0}^{T_{st}} m(t)dt$ T_{st} stated time for task completion m(t)probability density function of DMT	
Mean Duration of Maintenance Task:	
MDMT = E(DMT) = $\int_0^\infty t x m(t) dt$ E(DMT) expectation of the random variab	le DMT
	22

Module 1: A few Definitions and Formalisms

R&S Training Course CERN, February 2002

Maintenance and the Exponential Distribution $m(t) = (1 / A_m) \cdot exp - (t / A_m), t > 0$ In case of exponential probability distribution: $m(t) = P(DMT \le t) = 1 - exp - (t / A_m)$ DMT....Duration of Maintenance Task A_m.....Scale parameter of the exp. distribution = MDMT Example: On average it takes 10 days to restore a specific machine; find the chance that less than 5 days will be enough to successfully complete the restoration: Solution: $m(t) = (1/10) \cdot exp - (t / 10)$ and $P(DMT) \le 5 = M(5) = 1 - exp - 5/10 = 1 - 0.61 = 0.39$ 23

R&S Training Course Module 1: CERN, February 2002 From Components to Systems We have to recall some Basic Laws of Probability A and B are mutually exclusive events than the probability that either of them occurs in a single trial is the sum of their probability $Pr{A + B} = Pr{A} + Pr{B}$ If two events A and B are general, the probability that at least one of them occurs is: $Pr{A + B} = Pr{A} + Pr{B} - Pr{AB}$ Two events, A & B, are statistically independent if and only if $Pr{AB} = Pr{A} \cdot Pr{B}$ **Bayes Theorem** $\Pr\{A_i \mid B\} = \Pr\{A_i\} \cdot \Pr\{B \mid A_i\} / [\Sigma_i \Pr\{B \mid A_i\} \cdot \Pr\{A_i\}]$ More see in e. g. Schaum's Outline Series [Seymour Lipschutz]: "Theory and Problems of Probability", McGRAW-HILL Book Company 24

Module 1: Important Methods	R&S Training Course CERN, February 2002			
Markov Modelling / Chains				
Three Types:Homogeneous Continuous Time MarlNon-Homogeneous Continuous TimeSemi-Markov Models	kov Chain Markov Chain			
Pros - very flexible capability - good for repair - good for standby spares - good for sequence dependencies - Good for different type of fault coverage, error handl Cons - can require large number of states - modelling is relative complex model often different fr logical organisation of the system	ing and recovery rom physical or 34			

Module 1: Common Cause Failures R&S Training Course CERN, February 2002

The simple single parameter model called β factor model looks like

 $Q_m = \beta \cdot Q_t$

 β = e.g. 0,1 that means in other words 10% of the unavailability of a system would be caused by common cause failures

Some other models are shown in the next copy

br	nme	e I. on	Cause Fa	CERN, February 2002			
E	Stimati Approa	ion ch	Model	Model Parameters	General Formula for Multiple Component Failure Probability		
	Direct		Basic Parameter	Q ₁ , Q ₂ ,, Q _m	Q _k = Q _k k=1, 2,, m		
		Single Parameter	Beta Factor	Q _t , β	$Q_k = \begin{cases} (1-\beta)Q_t & k = 1\\ 0 & 1 < k < m\\ \beta Q_t & k = m \end{cases}$		
onshock Models	Indirect	ameter	Multiple Greek Letters	Q _t , β, γ, δ, m - 1 parameters	$\begin{aligned} Q_k &= \frac{1}{\binom{m-1}{k-2}} \left(\prod_{i=1}^k \rho_i\right) (1-\rho_{k+1}) Q_1 \\ \rho_1 &= 1, \rho_2 &= \beta_i \rho_3 = \gamma, \dots, \rho_{m+1} = 0 \end{aligned}$		
ž	Ż			Multipan	Alpha Factor	Q _t , α ₁ , α ₂ , α _m	$Q_{k} = \frac{k}{\binom{m-1}{k-1}} \frac{\alpha_{k}}{\alpha_{1}} Q_{1} \qquad k = 1,, m$ $\alpha_{t} = \sum_{k=1}^{m} k \alpha_{k}$
Shock Models		1	Binomial Failure Rate	Q _h , μ, ρ, w	$Q_{k} = \begin{cases} \mu \rho^{k} (1 - \rho)^{m - k} & k \neq m \\ \mu \rho^{m} + w & k = m \end{cases}$		

Module 1: Human Factor Issues R&S Training Course CERN, February 2002

Human Factor Issues are massive involved in the R&S Technology

- Human Operator Reliability in control rooms
- Human Reliability in maintenance work
- Human Reliability in abnormal, accidental and emergency conditions
- Man Machine Effectiveness
- Human Operators in control loop systems
- Ergonomics for control, supervision and maintenance of systems

Module 1: Software Issues	R&S Training Course CERN, February 2002
 Why Software Reliability Prediction (S Amount & Importance of software is incres Software accounts for approximately 80 % Software reliability is not improving fast Software is costly to fix Motivation, pressure and number of expension limited 	RP) is needed? easing 6 of switch failures rts for doing SRP
 Basic Questions in SRP: At what rate do failures occur ? What is the impact of these failures ? When will faults be corrected ? 	44

Module 1: Software Issues	R&S Training Course CERN, February 2002
Important Definition	
Failure An event in which the exect software system produces does not meet costumer ex (functional performance)	ution of a behaviour which xpectation
FaultThe part of the software sys be repaired to prevent a fai	tem which must lure.
	45

Module 1:	R&S Training Course
Software Issues	CERN, February 2002
If we have an observed data example $\lambda(t)$ (failure intensity/ra	e we can calculate ate)
if a Logarithmic Poisson Distribution $\lambda(t) = a / (b \cdot t + 1)$	is suitable:
The parameters to be estimated are a	a and b
For that we need the likelihood function	on or
the probability that the observed data	occur:
$L(data) = \Pi_j Pr\{y_j \text{ failure in period } j\}$	46

Module 1: Software I	ssues	R&S Training Course CERN, February 2002	
Example:			
Period j	System Month t _j	Number of Failures y _j	
1	23	55	
2	52	62	
3	89	47	
4	137	52	
5	199	56	
6	279	42	
7	380	47	
•	511	10	

Module 1: Software Issues	R&S Training Course CERN, February 2002
Example: Parameter estimates: $a = 2,93$; $b = 0,016$ $\lambda(t) = 2,93 / (0,016 \cdot t + 1)$ Thus: Estimates of failure intensity at 1.000 syste $\lambda(t) = 2,93 / (0,016 \times 1000 + 1) = 0,17$ failur	m month: es per system month
Estimate the mean cumulative number of fasystem month: 2,93 / 0,016) \cdot In (0,016 \cdot t +1) =	ailures at 5.000
2,93 / 0,016) · In (0,016 x 5.000 +1) = 805 f Today's References [IEC 61508; Belcore Publication	ailures ns plus Handout]
	48

Module 1:	R	&S Training Course		
Some Standards CERN, Februar				
IEC 300	Dependability Management			
IEC 605	Equipment Reliability Testing			
IEC 706 Guide to the Maintainability of Equipments				
IEC 50(191)	IEC 50(191) Procedure for Failure Mode and Effect Analysis (FMEA)			
IEC 1014 Programmes for Reliability Growth				
IEC 1025 Fault Tree Analysis (FTA)				
IEC 1070	IEC 1070 Compliance Test Procedure for Steady State Availability			
IEC 1078 Reliability Block Diagrams				
IEC 1123	IEC 1123 Reliability Testing			
IEC 1160	IEC 1160 Formal Design Review			
IEC 1146 Reliability Growth Models and Estimation Methods		ethods		
IEC 1165	IEC 1165 Application of Markov Methods			
IEC 61508	Functional safety of electrical/electronic/prog electronic safety related systems	grammable		
Others for R	eliability Issues: CENELEC, IEEE, ISO, N	MIL, ASME, etc.		

Module 2: Some Definitions	R&S Training Course CERN, February 2002
Reliability Insights generated by Impo	ortance Measures
 Fussel-Vesely = [PR{top} – Pr{top A = Weighted fraction of cut sets that conta Birnbaum = Pr{top A = 1} – Pr{top A = Maximum increase in risk Associated w failed to component A is perfect Risk Achievement worth = Pr{top A = The factor by which the top probability increase if component A is not available Risk Reduction Worth = Pr{top} / Pr{top The factor by which the risk would be recomponent A were made perfect 	0}] / Pr{top} ain the basic event : 0} with component A is 1} / Pr{top} (or risk) would e (not installed) p A = 0 educed if the

Module 2:	R&S Training Course
Living Models	CERN, February 2002
In R&S we have to learn permanently fr means it is an ongoing, never ending pr Living Process	rom the past; that rocess, we call it
It is strongly recommended to establish and	d to store all the
models and data with the means of comput	erised tools
 This helps to manage in a more efficient waitsues System Changes Personal Changes Increasing State of Knowledge 	ay three important

Module 2: Reliability Growth Management	R&S Training Course CERN, February 2002
Basic Structure Management 	
Testing	
 Failure Reporting, Analysis and Correct (FRACAS) 	ive Action System
During Test we observe	
 Type A modes (not fixed) 	
 Type B modes (fixed) 	
At beginning of the test operation	
$\lambda_i = \lambda_A + \lambda_B$	
Effectiveness Factor EF	
$\lambda_{inh} = \lambda_A + (1 - EF) \lambda_A$	
(more details for growth models see MIL-F	1DBK-189)

Module 2: How Safe is Safe Enough	R&S Training Course CERN, February 2002			
List of important qualitative Risk Characteristics related to Tolerability of Risk				
Qualitative Characteristics	Direction of Influence			
 Personal Control Institutional Control Voluntariness Familiarity Dread Inequitable Distribution Artificiality of Risk Source Blame 	Increase Risk Tolerance Depends on Confidence Increase Risk Tolerance Increase Risk Tolerance Decrease Risk Tolerance Depends on Individual Utility Amplifies Risk Awareness Increase Quest for Social and Political Response			
	6			

How Safe is Safe Enough? CERN, February 2002					CERN, February 2002
Z	The Netherlands (new establishments)	Z	Canada	Z	UK
1	IR < 10 ⁻⁶ Housing, schools, hospitals allowed	i	IR < 10 ⁻⁶ Every activity allowed	A	PED < 10 ⁻⁶ Insignificant risk area
2	10 ⁻⁶ < IR < 10 ⁻⁵ Offices, stores, restaurants allowed	ii	10 ⁻⁶ < IR < 10 ⁻⁵ Commercial activity only	В	10 ⁻⁶ < PED < 10 ⁻⁵ Risk assessment required
3	IR > 10 ⁻⁵ Only by exemption	iii	10 ⁻⁵ < IR < 10 ⁻⁴ Only adjacent activity	С	PED > 10 ⁻⁵ High risk area
		iv	IR > 10 ^{-₄} Forbidden area		

Module 3: The ideal Process	R&S Training Course CERN, February 2002			
The ideal R&S process consists (simplified) of			
four main elements:				
 Establishment of the Risk Policy 				
 Evaluation and Assessment of the Risk Concerns 				
Performing Risk Control				
To do Decision Making				
The process is highly intermeshed	and iterative!			
and multi-disciplinary	1			
	70			

Module 3:
The ideal Process

R&S Training Course CERN, February 2002

- To make this ideal process useful for application we need quantitative Safety Risk / Goal which is tolerable by the society.
- There is trend to use as orientation for this Goal the so called Minimal Endogen Mortality (MEM Value) which is the individual risk for young people to die per year
- This MEM value is given in most of the countries at al level of 2 x 10⁻⁴ per person year
- Based on this number some experts advocate for a Global Individual Risk Goal for Hazardous Installations at a level of 10⁻⁵ per person year.

Module 3: The ideal Process	R&S Training Course CERN, February 2002
List of important quali related to the	tative Risk Characteristics Tolerability of Risk
Qualitative Characteristics	Direction of Influence
 * Personal Control * Institutional Control * Voluntaries * Familiarity * Dread * Inequitable Distribution * Artificiality of Risk Source * Blame 	Increase Risk Tolerance Depends on Confidence Increase Risk Tolerance Increase Risk Tolerance Decrease Risk Tolerance Depends on Individual Utility Amplifies Risk Awareness Increase Quest for Social and Political Response

Module 3:	R&S Training Course
The ideal Process	CERN, February 2002
The ideal process integrates dea	sign, construction, and
operational parameters from the	e system, the operator
and the environ	iment.
The process is plant wide a	nd comprehensive
As a consequence we need for at leas	st the analysis of hardware,
software, paperware and the operator	behavior
 The analysis of hardware is reason The analysis of operator behavior is The analysis of paperware is reason The analysis of software is not well 	nably established s reasonably established onably established l established 73

I

Γ

Module 3:R&S Training CouAnatomy of RiskCERN, February 20	rse 02
 Three main Elements (Anatomy) of Risk: what can go wrong ? how frequent is it ? what are the consequences ? 	
 Consensus across Technologies these elements describe in a most complete form the "real world" the larger the consequences the smaller the frequencies should b Unresolved issue across Technologies 	e
how safe is safe enough - tolerability of risk	74

Module 3: From Goals towards Compliance	R&S Training Course CERN, February 2002
Allocation of MTTR [British Standard 65 MTTR _i = (MTTR _s x Σ_1^k n _i • λ_i) / kn _i • λ_i	648] for New Designs
where MTTR _i is the target mean active continue (or mean time to repair) for the a systems	orrective maintenance stem with k consisting
The Linear Programming Method propos using different constraints produces more The method permits better system mode scenarios, trade offs, data updating. etc.	ed by Hunt (92, 93) e realistic MTTRs. lling, different repair
	80

Module	3:			R&S Trai	ning Course
From G	oals towa	rds Com	pliance	CERN, F	edruary 2002
Allocation of MTTR [British Standard 6548] for New Designs Example: MTTR based on BS 6584 versus LP (MTTRs 30min; MTTRmin 5 min; MTTRmax 120 on average)				Designs age)	
Item	n	λ (10 ⁻³)	nxλ	MTTR	MTTR
Unit A	1	0,3430	0,3430	10,93	17,63
В	1	0,2032	0,2032	18,45	29,76
С	1	0,1112	0,1112	33,72	54,38
D	1	0,2956	0,2956	12,69	20,46
E	1	0,0439	0,0439	85,42	123,95
F	1	0,0014	0,0014	2.678,57	120,00
G	1	0,0001	0,0001	37.500,00	120,00
Н	1	0,0016	0,0016	2343,75	120,00

Module 4: Where We Are	R&S Training Course CERN, February 2002
REFERENCES	
 F. E. Dunn, DC. Wade "Estimation of thermal fatigue due to beam OFCD-NEA Workshop on Utilization and Reliability of High Power Proton Accels 24, 1999 	interruptions for an ALMR-type ATW" erators, Aix-en-Provence, France, Nov.22-
[2] L.C. Cadwallader, T. Pinna Progress Towards a Component Failu Safety International Topical Meeting on Probabilistic Safety Assessment PSA 99 1999	re Rate Data Bank for Magnetic Fusion 9, Washington DC (USA), August 22-26
[3] C. Piaszczyck, M. Remiich, "Reliability Survey of Accelerator Facil Conference Proceedings, Knoxville (USA), May 12-14 1998	lities", Maintenance and Reliability
[4] C. Piaszczyck, 'Operational Experience at Existing Accelerator Fa Reliability of High Power Accelerator, Mito (Japan), October 1998	cilities", NEA Workshop 011 Utilization and
[5] VI. Martone, "IFMIF Conceptual Design Activity" Final Report, Rep	port ENEA RT-ERG-FUS-96-1 1(1996)
[6] C. Piaszczyck, M. Rennieh "Reliability Analysis of IFMIF" and Inter Applications of Aceelerator Technology, ACCAPP '98, Gatlinburg (USA), Septe	mational Topical Meeting on Nuctear mber 20-23 1998
[7] L. Burgazzi, "Safety Assessment of the IFMIF Facility", doc. ENEA	A-CT-SBA-00006 (1999)
[81 C. Piaszczyck, M. Eriksson "Reliability Assessment of the LANSC Topical Meeting on Nuelear Applications of Accelerator Technology, ACCAPP ' 1998	E Accelerator System" 2'd International 98, Gatlinburg (USA), September 20-23
[9] L. Burgazzi, "Uncertainty and Sensitivity Analysis on Probabilistic s Facility" _s th International Conference on Probabilistic safety assessment and Ma 1,2000.	safety Assessment of an Experimental anagement" Osaka (Japan) Nov. 27-Dec
	85

Module 4:		R&S Training Course
Where We Are		CERN, February 2002
Component [from Burgazzi, ESRE Ion Source rf Antenna Ion Source Extractor Ion Source Turbomech Vac Pump LEPT Focussing Magnet LEBT Steering Magnet DTL Quadrupole Magnet DTL Support Structure DTL Cavity Structure High Power rf Tetrode Circulator Rf Transport Directional Coupler Reflectometer	L2001] 6,0 E-3 1,0 E-5 5,0 E-5 2,0 E-6 2,0 E-6 1,0 E-6 2,0 E-7 5,0 E-5 2,0 E-7 1,0 E-6 1,0 E-6 1,0 E-6 1,0 E-6 1,0 E-6	
Resonance Control Solid State Driver Amplifier	1,0 E-5 2,0 E-5	86

/lodule 4: Vhere We Ar	е		R&S Training Course CERN, February 2002
Results of Relia from Burgazzi, ES	ability Studies at SREL2001]	LANSCE Ad	celerator
Main System	Subsystem	MDT [h:min]	MTBF [h:min]
805 RF	Klystron Assembly	0:44	11560
	High Voltage System	0:18	960
Magnet Focusing	DC Magnet	0:53	232280
	Magnet	0:50	8445
	Supplies		
Pulse Power	Harmonic Puncher	0:09	44
	Chopper Magnet	0:08	291
	Deflector Magnet	0:10	684
	Kicker Magnet	1:58	557
Water System	Water Pump	0:29	29506
Vacuum System	Ion Pump	0:29	25308

Module 4: Similarities and Differences in R&S	R&S Training Course CERN, February 2002
It makes a difference analysing for "Reliab "Safety". But many elements and part are common	ility" of LHC or for ts of analysis
For "R" we look mainly for failures in operat For "S" we look after occurring an initiating stand-by (safety) systems	ional systems event for failures in
In other words: Rwhat is the probability of loss of functio Swhat is the probability of a given damage at the LHC	n of LHC ge (consequence)
	00

Module 4: Master Logic	R&S Training Course CERN, February 2002
Analysing R we have to look first which needed for the function of the	system functions are entire LHC
The opposite of the function R answers f (unavailability Q = 1 - R) of the LHC	for the malfunction Q
To answer the question: "which system functions are needed" the so-called Master Logic is an appropr thinking	iate tool and a way of
In the next slide a simplified example, bu should expand it using an excel sheet	ut for training we
	91

Module 4: Anatomy of Risk	R&S Training Course CERN, February 2002
Analysing S we have to look first which have to evaluate. This is strongly de so-called hazard pote	ch Type of Risks we ependent from the ntial
To answer the question: "which type of risks we have to evaluate the so-called Anatomy of Risk is an app way of thinking	" ropriate tool and a
In the next slide a simplified example, be should expand it using an excel sheet	ut for training we
	93

Module 4:	R&S Training Course
Source Term Analyse	CERN, February 2002
 Task: Evaluation of type, amount and frequence releases of harmful material and classified categories (STGs) Method: Event Sequence Analysis, Fault Tree Are System Response Analyse Operational Experience and Data Gener Formalism: f(STG) = f(PDS) . p(PDS> STG) Analysis Logic: 	ey of possible cation into release alysis ation $PDS_1 + STG_1$ $PDS_2 + STG_2$

Module 5:	
Constraints in Data and Methods	

R&S Training Course CERN, February 2002

- To model the Real World we have the transform the historical experience via methods and data into a prognosis for the future
- The data base is often sparse and limited
- We have to start with generic data, statistically improved by Bayesian technique, if more and more plant specific data will be available
- Methods should be tested by Benchmarks between independent expert teams
- Formal Expert Judgement procedures should be used if the evidence from the past related to the methods and the data is very limited
- Remember: as longer you would search in potential date bases as more reliable date you would identify

Module 5:R&S Training CourseLimitations per seCERN, February 2002	e
 Within the R&S process we have to be aware about at least - three type of uncertainties Parameter uncertainties (aleatory uncertainties) Model uncertainties (epistemic uncertainties) Degree of completeness 	
Problems and unresolved issues performing an uncertainty assessment increases with this sequence	
But "some information about uncertainties is better than nothing" Remember: in the Deterministic Approach we generate point values only	106

- Motor Car Industry: differences; tendency towards risk-based
- Space Industry: strong tendency towards risk-based

Module 5: Examples from different Technolo	R&S Training Course Ogies ^{CERN, February 2002}	
Why Events Occur (in 352 LERs, NPP; USA)		
Human Variability	50 [%]	
Work Place Ergonomics	25	
Procedure not Following	28	
Training	10	
Task Complexity	5	
Procedures	7	
Communication	5	
Changed Organisation	8	
Work Organisation	28	
Work schedule	10	
Work Environment	8	
	108	

Module 5: Examples from different Te	R&S Training Course CERN, February 2002	
The Volume and Importance of Maintenance in the Life Cycle of a System, e. g. Boeing 747; N747PA [Knezevic: Systems Maintainability, ISBN 0 412 80270 8; 1997]		
Been airborne	80.000 hours	
Flown	60,000.000 km	
Carried	4,000.000 passengers	
Made	40.000 take-off and landings	
Consumed	1.220.000.000 litres of fuel	
Gone through	2.100 tyres	
Used	350 break systems	
Been fitted with	125 engines	
Had the passenger comp. replaced	4 times	
Had structural inspections	9.800 X-ray frames of films	
Had the metal skin replaced	5 times	
Total maintenance tasks during 22 y	806.000 manhours 112	

 Module 5:
 R&S Training Course CERN, February 2002

 Examples from different Technologies
 CERN, February 2002

 The Volume and Importance of Maintenance in the Life Cycle of a System, e. g. Civil Aviation [Knezevic: Systems Maintainability, ISBN 0 412 80270 8; 1997]

 Between 1981 and 1985

 19 maintenance-related failures claimed 923 lives

 Between 1986 and 1990

 27 maintenance-related failures claimed 190 lives

Module 5:	R&S Training Course	
Examples from different Teo	CERN, February 2002	
Example Civil Aviation [Knezevic: Systems Maintainability, ISBN 0 412 80270 8; 1997]		
Safety demands expressed through the achieved hazard rates (1982 – 1991) for propulsion systems required by CAAM		
Hazard	Hazard Rate	
High energy non-containment	3,6 x 10 ⁻⁸ per engine hour	
Uncontrolled fire	0,3 x 10 ⁻⁸ per engine hour	
Engine separation	0,2 x 10 ⁻⁸ per engine hour	
Major loss of trust control	5,6 x 10 ⁻⁸ per engine hour	

Module 5: Examples from differe	R&S Training Course CERN, February 2002	
If we have good (hard) statistical data then we should use it		
 e.g. for traffic accidents normally exist good statistics. Thus, for RIDM we should use these data base [bast Heft M95; Risikoanalyse des GGT f ür den Zeitraum 87-91 f ür den Stra ßeng üternahverkehr (GVK) und f ür den Benzintransport ", D] 		
Accidents (GVK)	Number	89
Driving Performance (GVK)	mio.Vehiclekm	416,2
Accident Rate(GVK)	Accidents/ mio.Vehiclekr	n 0,214
Accident Rate (GVK)	Accidents / mio.Vehiclek	m 214 x 10-9
Gasoline Transport		
Accident Rate 0 -100 I	Accidents / mio.Vehiclek	m 72,76 x 10-9
Accident Rate 110 – 10.000 I	Accidents / mio.Vehiclek	m 109,14 x 10-9
Accident Rate >10.000 I	Accidents / mio.Vehiclek	m 32,10 x 10-9
		115

Module 5: R&S Train Examples from different Technologies	ing Course oruary 2002
If we have good (hard) statistical data in Handbooks should use it (see also [Birolini; Springer 1997, ISBN 3-540-6 . <u>MIL-HDBK</u> -217F, USA . CNET RDF93, F . SN 29500, DIN 40039 (Siemens, D) . <u>IEC</u> 1709, International . EUREDA Handbook, <u>JRC</u> Ispra, I . Bellcore TR-332, International . <u>RAC</u> , NONOP, NPRD; USA . NTT Nippon Telephone, Tokyo, JP . IEC 1709, International . T-Book (NPP Sweden) . <u>OREDA</u> Data Book (Offshore Industry) . <u>ZEDB</u> (NPP Germany)	then we 53310-3]) 116

R&S Training Course Some Key Words CERN, February 2002 Availability Verfügbarkeit Case Fall Cause Ursaache Consequence Auswirkung Event Ereignis Ereignisbaum Event Tree Example Beispiel Failure Mode Fehlerart Failure Rate Ausfallrate Fault Tree Fehlerbaum FMEA Fehler-Möglichkeits- und Auswirkungsanalyse Initiating Event Auslösendes Ereignis Maintainability Instandhaltbarkeit Maintenance Instadhaltung Minimal Cut Set Minimale Schnittmenge Probability Wahrscheinlichkeit Reliability Zuverlässigkeit Result Ergebnis Risk Risko Safety Sicherheit Solution Lösung Time Zeit 123

U	sed Abbreviations	R&S Training Course CERN, February 2002
A	Availability	
ALARP	As Low As Reasonably Achievable	
EIA	Event Tree Analysis	
ESRA	European Safety And Reliability Association	
IF	Initiating Event	
f	Frequency	
FMEA	Failure Mode and Effect Analysis	
FTA	Fault Tree Analysis	
MTTF	Mean Time To Failure	
MTTR	Mean Time To Repair	
MTBF	Mean Time Between Failure	
MUT	Mean Up Time	
р	Probability	
PSA	Probabilistic Safety Assessment	
Q	Unreliability	
QRA	Quantitative Risk Assessment	
R	Reliability	
RAMS	Reliability, Availability, Maintainability, Safety	
2	Failura Pata	
л П	Repair Rate	
μ		

