Fest Kolloquium for Heinrich Wahl

Speakers will include:

K. Kleinknecht: Kaons in the '70s

The CDHS years

Heinrich Wahl's scientific contribution will be celebrated at CERN on

Tuesday 11 February 2003 15:00 Main Auditorium Contribution to Aleph

K.Peach: NA31, the first e^t/e experiment

I.Mannelli: Birth pains of NA4B

J.Steinberger: A colleague and a friend

C.Jarlskog: CP-Wahl : Theory

You are all invited A cocktail will follow.

NA31 - the first ϵ'/ϵ experiment

Ken Peach

A personal view of the contribution of Heinrich W ahl to a classic experiment

W hat is important? W hat is interesting?

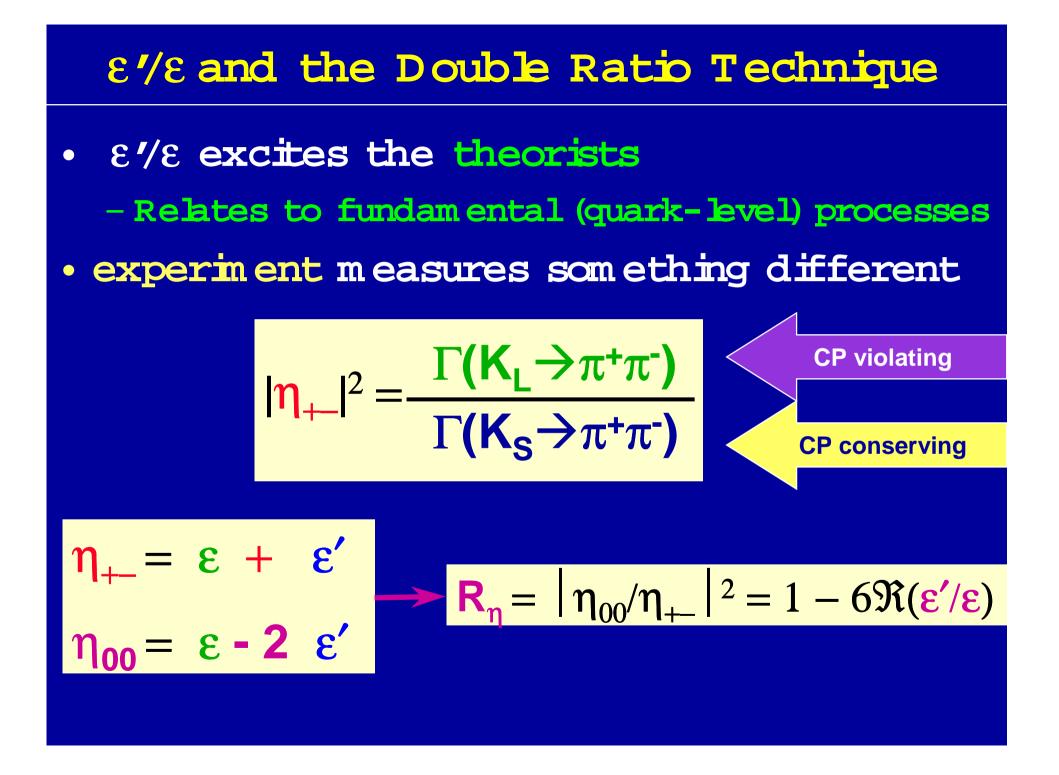
• There are two basic routes to discovery

1. The High Energy Frontier

• LEP, HERA, Tevatron, LHC, ...

2. The High Precision Frontier

- a) High statistics
 - The Factories' $(\phi, \tau c, b, v, ...)$
- b) Low systematics
 - Electric Dipole Moments, g-2, rare decays (μ,π,K...), dark matter searches, neutrino oscillations, anti-hydrogen...


Note: of course, <u>all</u> need high statistics, control of errors etc - but the characteristic feature that leads to discovery is energy, statistics or systematics

In the beginning ...

- Ideas for the NA31 experiment formed in 1980/1981, before I joined, to measure ϵ'/ϵ to a precision of a few per mille
 - Theoretical expectations were that ϵ'/ϵ could be ~2%
- The proposal was approved by CERN in 1982
 Theoretical expectations were that ε'/ε could be ~0.2%!
- The full Collaboration was

CERN - Dortmund¹ - Edinburgh - Orsay - Pisa - Siegen

The spokesperson was Heinrich W ahl

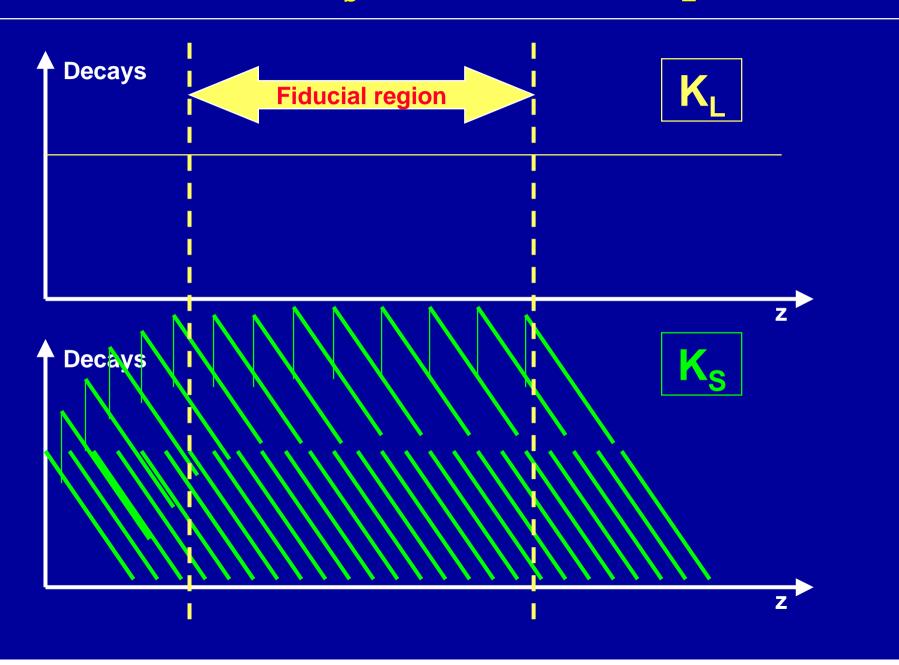
Experimental considerations

$$R_{\eta} = \frac{N(K_{L} \rightarrow \pi^{0}\pi^{0})}{N(K_{S} \rightarrow \pi^{0}\pi^{0})} \frac{N(K_{S} \rightarrow \pi^{+}\pi^{-})}{N(K_{L} \rightarrow \pi^{+}\pi^{-})}$$

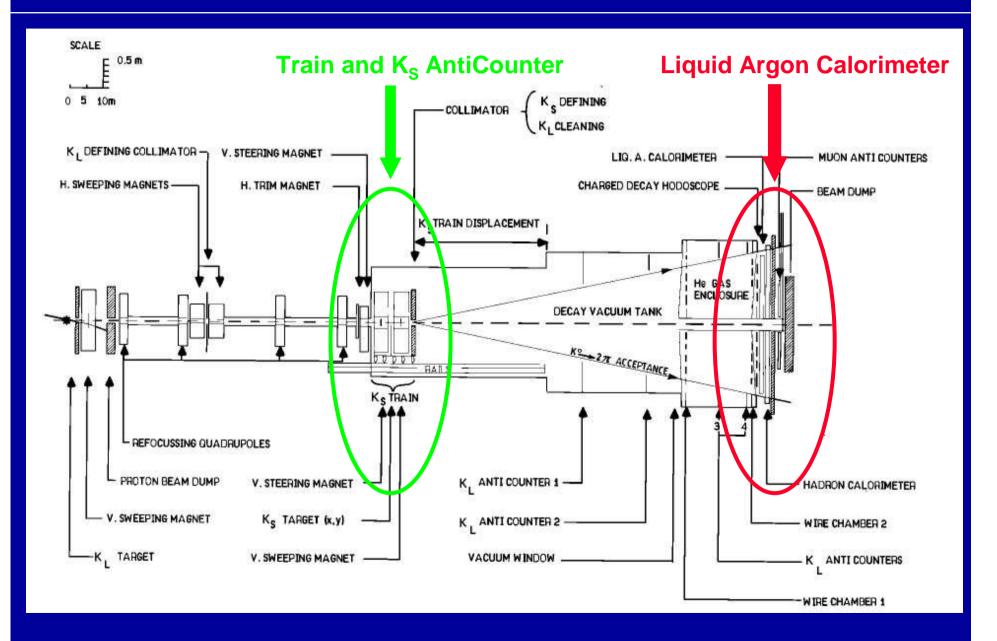
$$\Gamma^{xy} \approx N^{xy} / [F^{xy} \times A^{xy} \times (1 + C^{xy})]$$

$$Flux \quad Acceptance \quad Corrections$$

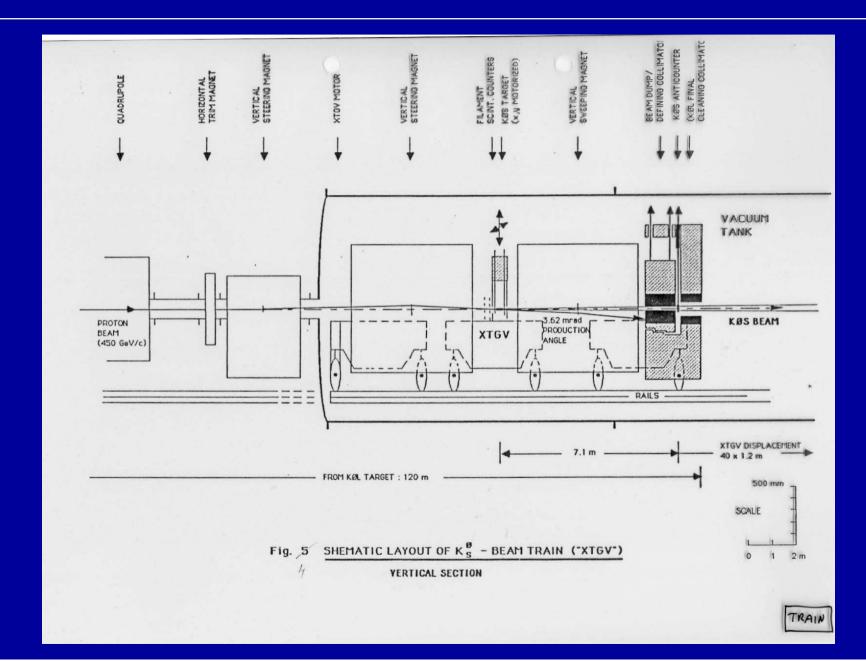
In order for R to be simply related to the quad ratio of the event numbers
 F, A and C must cancel <u>either</u> between K_L and K_s <u>or</u> between 2π⁰ and π⁺π⁻


Principles of the Experiment

- Concurrent detection of $2\pi^0$ and $\pi^+\pi^-$
 - Flux cancels
- Symmetrical' cuts against additional activity
 - Accidental effects cancel
- Reduction of backgrounds
 - and estimate remaining backgrounds from data
- Reduction of reliance on Monte Carlo simulation
 - <u>Acceptance</u>
 - The Acceptance is a strong function of <u>Energy</u> & <u>Vertex</u>

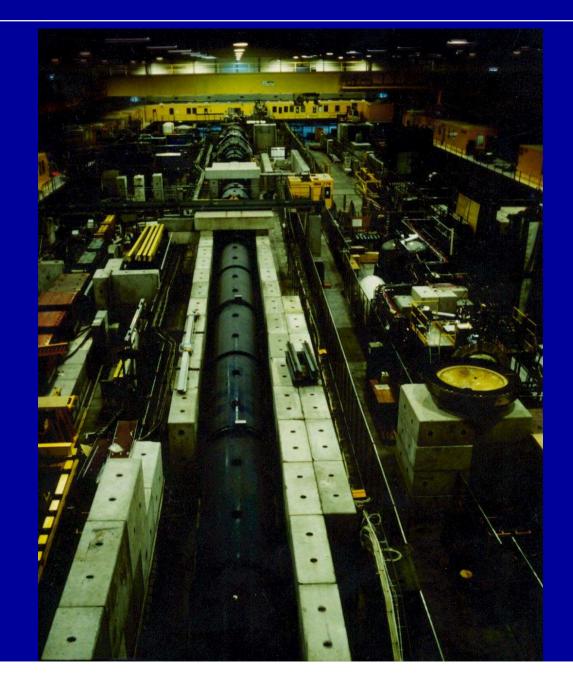

Analyse the data in energy ranges so that residual spectral differences between K_L and K_S are small

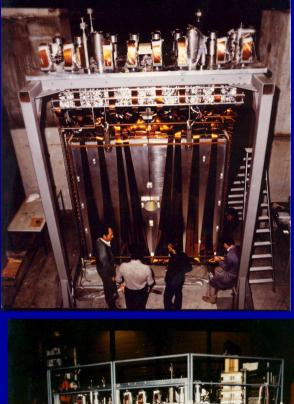
Make the K_L and K_S vertex distributions similar, and analyse in vertex ranges so that residual differences are small

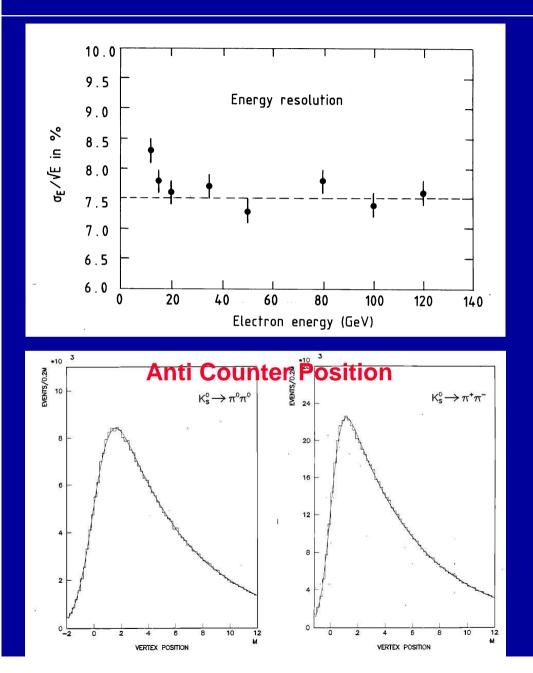

How to make a K_s decay with the K_L lifetime'

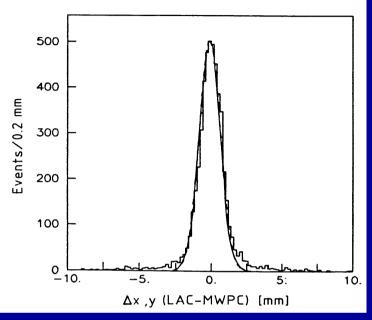
The conceptual design

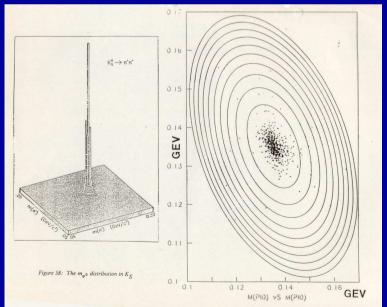
... the target train


The target train ...



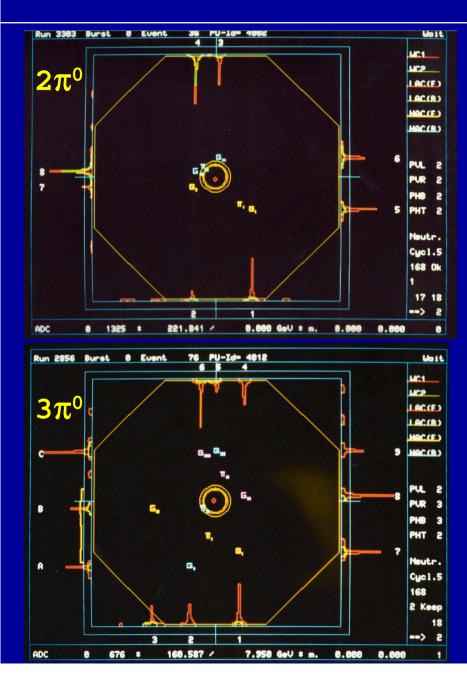

... and the detector

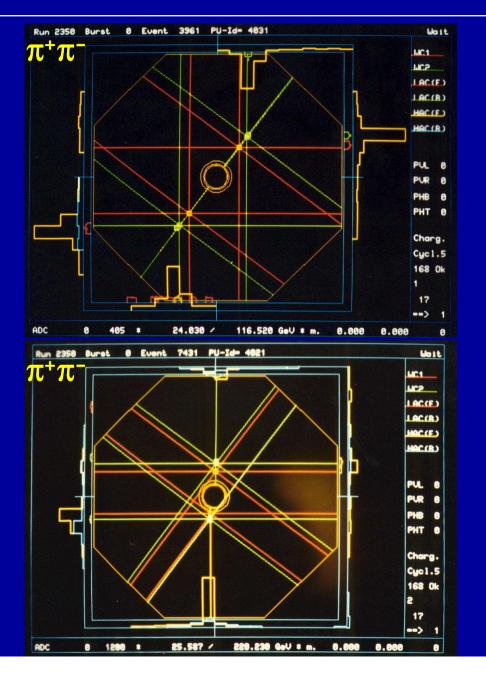




... Cabrimeter performance




Brave New Work


- NA31 (bravely) decided to use Fastbus as its data acquisition technology
 - Adopted by LEP
 - W ould mean that we would
 - "get a bt of help that we otherwise would not get"
 - Bob Chase remarked (perceptively) that we would

"need a lot of help that we otherwise would not need"

Some events

Data Taking

- 1982 Test beam work
- 1983 Test beam work
- 1984 First data with full beam (no liquid argon)
- 1985 Fullbeam and detector, restricted readout
- 1986 First run of the complete experiment
- 1987 Special run to measure phase differences
 - Preliminary result announced in July

$\epsilon'/\epsilon = 0.0033 \pm 0.0011$

- 1988 More ε'/ε running
- 1989 Final ε'/ε run

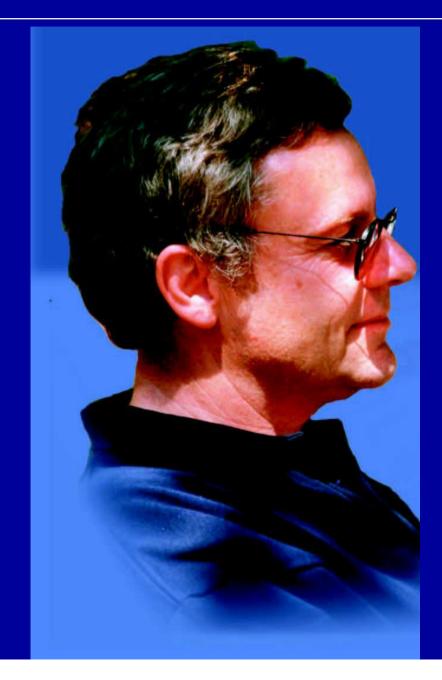
From a contemporary seminar

1986 Data			
	Events	% Background	
$K_L ightarrow 2\pi^0$	109 000	4.0	
$K_L o \pi^+ \pi^-$	295 000	0.6	
$K_S ightarrow 2\pi^0$	932 000	< 0.1	
$K_S o \pi^+ \pi^-$	2 300 000	< 0.1	

 $R_\eta=0.977\pm0.004$

statistical error only

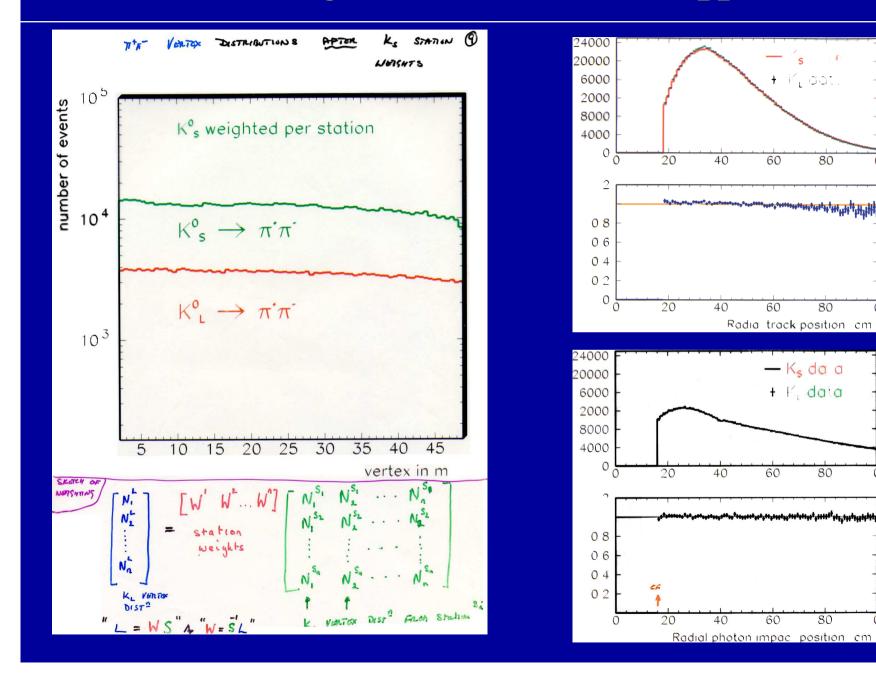
Simple Ratio
0.912
Becomes
0.977
after binning in
energy & vertex


Main Systema	tic Effects	s on R_η
Effect	%	Improved in 1988/9
Energy Scale	0.3	Yes
$2\pi^0$ background	0.2	Yes
$\pi^+\pi^-$ background	0.2	Yes
Accidental losses/gains	0.2	Yes
All other systematics	$<\sim 0.2$	<~ 0.2

1986 Data Summary of Corrections to R_n

	Collimator Scattering %	Pretriger Inefficiency %	Trigger Inefficiency %	Accidental Losses&Gains %
$K_L ightarrow 2\pi^0$	< 0.1	0.06 ± 0.06	0.20 ± 0.10	2.6 ± 0.07
$K_L o \pi^+ \pi^-$	< 0.1	0.37 ± 0.07	0.05 ± 0.06	2.6 ± 0.05
$K_S ightarrow 2\pi^0$	0.3	0.04 ± 0.02	0.12 ± 0.03	2.5 ± 0.05
$K_S o \pi^+ \pi^-$	0.3	0.48 ± 0.03	0.01 ± 0.01	2.8 ± 0.05

Total effect of $R_\eta \sim 0.2\%$.


Key points in the analysis

"The devil is in the detail"

- The energy scale
- Statistical analysis
- Accidentals
- Backgrounds
- Trigger efficiencies
- Reconstruction efficiencies
- The acceptance
- Rate effects
- Instrumental effects

Making the cancellation happen

O ther physics

```
1987

First observation of K_{s} \rightarrow \gamma \gamma

New measurement of K_{L} \rightarrow \gamma \gamma

1988

Search for K_{L} \rightarrow \pi^{0}e^{+}e^{-}

Measurement of K_{L} \rightarrow \pi^{0}e^{+}e^{-}

1989

Search for K_{L} \rightarrow \pi^{0}h^{0}; h^{0} \rightarrow e^{+}e^{-}

1990

Measurement of the phases \phi_{+-} and \phi_{00}, and the phase difference

Measurement of K_{L} \rightarrow e^{+}e^{-}\gamma

Observation of K_{L} \rightarrow \pi^{0}\gamma\gamma
```

1991

Observation of $K_{\tau} \rightarrow e^+e^-e^+e^-$

1992

M easurement of $K_{L} \rightarrow \pi^{0} \gamma \gamma$

1993

New (final) measurement of ε'/ε search for $\kappa_{c} \rightarrow \pi^{0}e^{+}e^{-}$

1994

Search for $K_{\tau} \rightarrow \pi^0 \pi^0 \gamma$

1995

Branching Ratios $\Gamma(K_L \rightarrow 2\pi^0)/\Gamma(K_L \rightarrow \pi^+\pi^-\pi^0)$ and $\Gamma(K_L \rightarrow 3\pi^0)/\Gamma(K_L \rightarrow \pi ev)$, M easurement of $K_L \rightarrow e^+e^-e^+e^-$ & parity of the K_L S earch for $K_L \rightarrow \gamma\gamma\gamma$

1997

M easurement of the K lifetime M easurement of $K_{\tau} \rightarrow e^{+}e^{-}\gamma\gamma$

$\epsilon'/\epsilon = 0.00230 \pm 0.00065$

E'/E = 0.0033 ± 0.0011 [1987]

[1986] Presentation of the Cheque' for 200,000 $K_{L} \rightarrow 2\pi^{0}$

Heinrich W ahl

NA31 Spokesperson

... and in action ...

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP/88-47 6 April 1988

FIRST EVIDENCE FOR DIRECT CP VIOLATION

CERN-Dortmund-Edinburgh-Mainz-Orsay-Pisa-Siegen Collaboration

 H. Burkhardt¹, P. Clarke, D. Coward², D. Cundy, N. Doble, L. Gatignon, V. Gibson, R. Hagelberg, G. Kesseler, J. van der Lans, I. Mannelli³, T. Miczaika⁴, A.C. Schaffer⁵, J. Steinberger, H. Taureg, H. Wahl and C. Youngman⁶

CERN, Geneva, Switzerland

G. Dietrich and W. Heinen⁷

Institut für Physik, Universität Dortmund, Fed. Rep. Germany^a

R. Black, D.J. Candlin, J. Muir, K.J. Peach, B. Pijlgroms⁸, I.P. Shipsey⁹ and W. Stephenson Physics Department, University of Edinburgh, UK

> H. Blümer, M. Kasemann, K. Kleinknecht, B. Panzer and B. Renk Institut f
> ür Physik, Universit
> ät Mainz, Fed. Rep. Germany^a

E. Augé, R.L. Chase, M. Corti, D. Fournier, P. Heusse, L. Iconomidou-Fayard, A.M. Lutz and H.G. Sander¹

Laboratoire de l'Accélérateur Linéaire, Université de Paris-Sud, Orsay, France^b

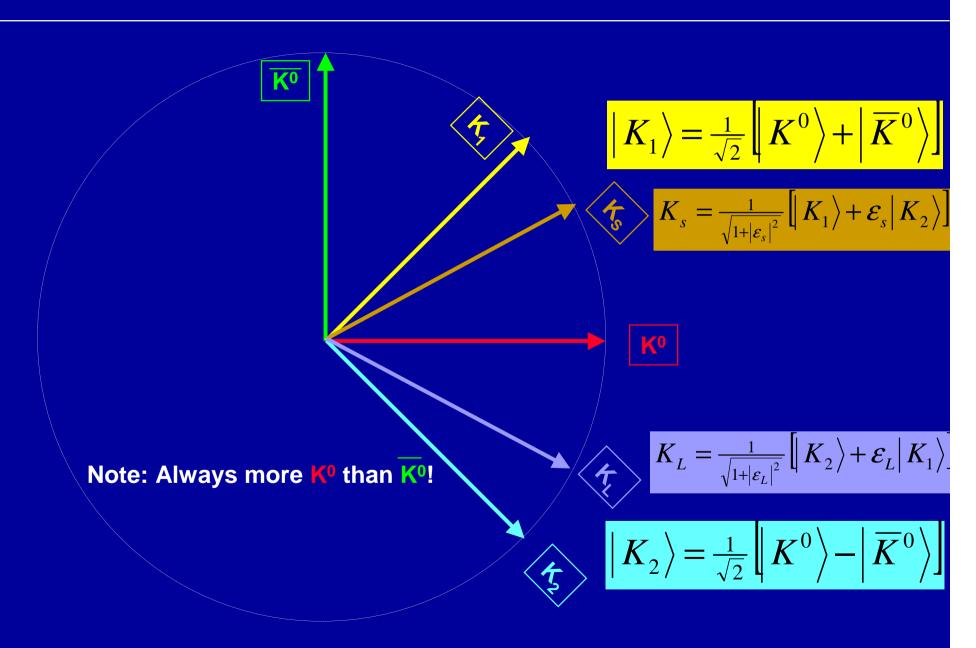
A. Bigi, M. Calvetti¹⁰, R. Carosi, R. Casali, C. Cerri, G. Gargani, E. Massa, A. Nappi and G.M. Pierazzini

Dipartimento di Fisica e Sezione INFN, Pisa, Italy

C. Becker⁴, D. Heyland⁴, M. Holder, G. Quast, M. Rost, W. Weihs and G. Zech Fachbereich Physik, Universität Siegen, Fed. Rep. Germany^c

(Submitted to Physics Letters B)

1) Present address: Fachbereich Physik, Universität Siegen, Fed. Rep. Germany.


 On leave from SLAC, Stanford, Calif., USA (work supported in part by the U.S. Department of Energy contract DE-AC03-765F00515).

3) Present address: Scuola Normale Superiore e Sezione INFN, Pisa, Italy.

- 4) Present address: DVFLR, Cologne, Fed. Rep. Germany.
- 5) Present address: LAL, Université Paris-Sud, Orsay, France.
- 6) Present address: II. Inst. f. Exp. Physik, Universität Hamburg, Fed. Rep. Germany.
- 7) Present address: IP-Systems, Karlsruhe, Fed. Rep. Germany.
- 8) Present address: FWI, University of Amsterdam, The Netherlands.
- 9) Present address: Syracuse University, NY, USA.
- 10) Present address: Dipartimento di Fisica e Sezione INFN, Perugia, Italy.
- a) Funded by the German Federal Minister for Research and Technology (BMFT) under contract 05 4MZ18.
- b) Funded by Institut National de Physique des Particules et de Physique Nucléaire, France.
- c) Funded by the German Federal Minister for Research and Technology (BMFT) under contract 054 Si74.

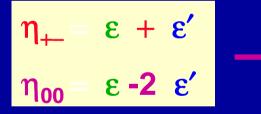
	NAS/	E 781
k-ətinə 	428 k	410 k
K _{1.2} x.'*'	1142 k	327k
K_2>27*	2254 h	2004
Ng DATAT	55414	10614
1 60 ct-		Contract Statistics
$R_{nw} = \frac{L^{-S}}{S^{\infty}L^{+-}}$	0.9213	1.6629
A = Los Soult-	0.9213	1.6629 0-0497
no c -	0.0023	
	0.0023	Q-080 }

The neutral kaon system

CP conservation

- Since **CP** $2\pi > = + 2\pi >$
- CP conservation implies that

1.
$$\epsilon_{\rm S} = \epsilon_{\rm L} = 0$$


 $\$ K_L cannot decay into 2π

! Note that CPT implies

$$\varepsilon_{s} = \varepsilon_{L}$$

$$2\pi$$
 state can be either I=0 or I=2

$$\pi^{+}\pi^{-}$$
 is 2/3 (I=0) and 1/3 (I=2)
 $\pi^{0}\pi^{0}$ is 1/3 (I=0) and 2/3 (I=2)

$$\mathbf{R}_{\eta} = |\eta_{00}/\eta_{+}|^2 = 1 - 6\Re(\boldsymbol{\epsilon'/\epsilon})$$

$$\mathcal{E}' = \frac{1}{\sqrt{2}} i e^{i(\delta_2 - \delta_0)} \frac{\Im A_2}{A_0}$$