

Particle ID using the specific energy loss dE/dx

 π/K separation (2 σ) requires a dE/dx resolution of < 5%

Average energy loss for e,μ,π,K,p in 80/20 Ar/CH₄ (NTP) (J.N. Marx, Physics today, Oct.78)

But: Large fluctuations + Landau tails !

10.0

p(GeV/c)

1.0

1.0

0.1

100

CERN Summer Student Lectures 20 Particle Detectors

Cherenkov radiation

Cherenkov radiation is emitted when a charged particle passes a dielectric medium with velocity

medium	n	$\theta_{\max}(\beta=1)$	$N_{ph} (eV^{-1} cm^{-1})$
air	1.000283	1.36	0.208
isobutane	1.00127	2.89	0.941
water	1.33	41.2	160.8
quartz	1.46	46.7	196.4

Energy loss by Cherenkov radiation small compared to ionization (\approx 1%)

Number of detected photo electrons

$$N_{p.e.} = L\sin^2 \boldsymbol{q} \frac{\boldsymbol{a}}{\hbar c} \int_{E_1}^{E_2} \boldsymbol{e}_Q(E) \prod_i \boldsymbol{e}_i(E) dE$$
$$N_0 = 370 \cdot eV^{-1} \cdot cm^{-1} \langle \boldsymbol{e}_{total} \rangle \Delta E$$

 $\Delta E = E_2 - E_1$ is the width of the sensitive window of the photodetector (photomultiplier, photosensitive gas detector...)

Example: for a detector with $\langle e_{total} \rangle \Delta E = 0.2 \cdot 1 \, eV$ $L = 1 \, cm$ and a Cherenkov angle of $q_C = 30^\circ$ one expects $N_{p.e.} = 18$ photo electrons

Particle ID with Cherenkov detectors

Detectors can exploit ...

- $N_{ph}(\beta)$: threshold detector (do not measure θ_C)
- θ(β): differential and Ring Imaging Cherenkov detectors "RICH"

Threshold Cherenkov detectors

The mirror cage of the DELPHI Barrel RICH (288 parabolic mirrors)

"Marriage" of mirror cage and central detector part of the DELPHI Barrel RICH.

Ky-

Performance of DELPHI RICH (barrel) in hadronic Z decays

Photo detectors for RICH counters

 Gas based detectors Admix photosensitive agent (TEA, TMAE) to detector gas example DELPHI:

CERN Summer Student Lectures 2002 Particle Detectors

Cherenkov detectors (backup)

- ~200-400 bounces
- loss ~10-20% = f(θ_{dip})

CERN Summer Student Lectures 2002 Particle Detectors

TR Radiators: stacks of CH₂ foils are used hydrocarbon foam and fiber materials Low Z material preferred to keep re-absorption small ($\propto Z^5$) sandwich of radiator stacks RDRDRDRD and detectors \rightarrow minimize re-absorption TR X-ray detectors: • Detector should be sensitive for $3 \le E_{\gamma} \le 30$ keV. • Mainly used: Gaseous detectors: MWPC, drift chamber, straw tubes... + HV -DV $\sigma_{photo\;effect} \propto Z^5$ **Detector gas:** • 0 \rightarrow gas with high Z required, TR e.g. Xenon (Z=54) BEAM dE/dx: . ο ANODES Intrinsic problem: 0 RADIATOR FIELD detector "sees" TR and dE/dx WIRES LONG. DRIFT CHAMBER Pulse height dE/dx TR (10 keV) (1 cm Xe) ≈200 e⁻ ≈500 e⁻ Discrimination by threshold · t

ATLAS Transition Radiation Tracker

A prototype endcap "wheel".

X-ray detector: straw tubes (4mm) (in total ca. 400.000 !)

Xe based gas

TRT protoype performance

Summary:

- A number of powerful methods are available to identify particles over a large momentum range.
- Depending on the available space and the environment, the identification power can vary significantly.

A very coarse plot

