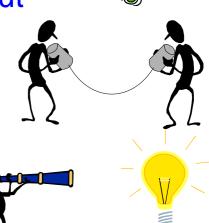
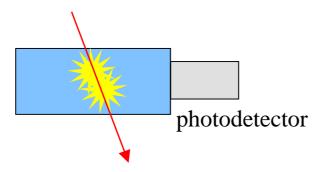


Scintillation + Photo Detection



- Organic scintillators
- Geometries and readout



Scintillation

Scintillation

Energy deposition by ionizing particle

→ production of scintillation light (luminescense)

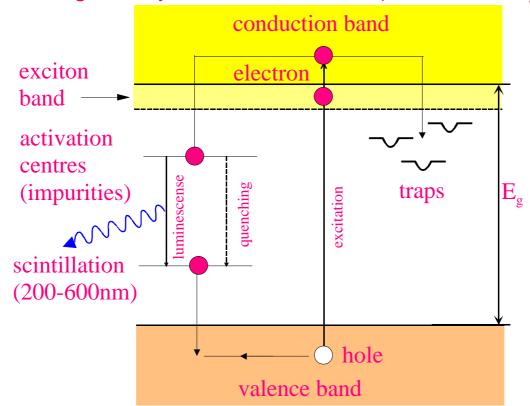
Scintillators are multi purpose detectors

- calorimetry
- time of flight measurement
- tracking detector (fibers)
- trigger counter
- veto counter

Two material types: Inorganic and organic scintillators

but slow

high light output lower light output but fast



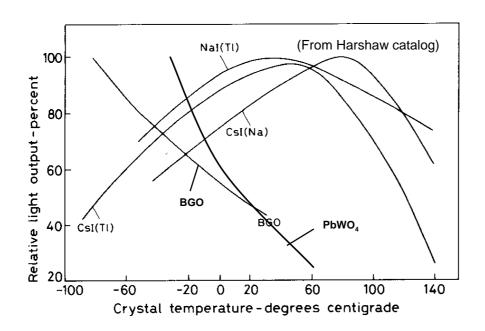
Inorganic scintillators

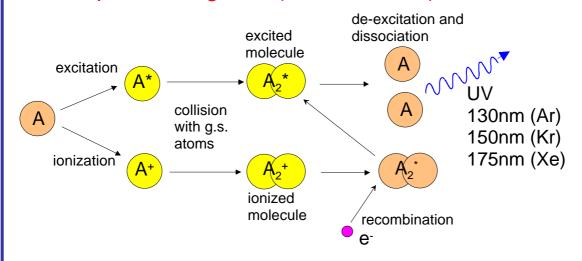
Three different scintillation mechanisms:

1a. Inorganic crystalline scintillators (NaI, CsI, BaF₂...)

often ≥ 2 time constants:

- fast recombination (ns-µs) from activation centre
- delayed recombination due to trapping (≈ 100 ms)


Due to the high density and high Z inorganic scintillator are well suited for detection of charged particles, but also of γ .


Inorganic scintillators

Light output of inorganic crystals shows strong temperature dependence

1b. Liquid noble gases (LAr, LXe, LKr)

also here one finds 2 time constants: few ns and 100-1000 ns, but same wavelength.

Inorganic scintillators

Properties of some inorganic scintillators

Table A6.2 Properties of some inorganic scintillators

scintillator composition	density (g/cm ³)	index of refraction	wavelength of maximum emission (nm)	decay time constant (µs)	scintillation pulse height ¹⁾	notes	Photons/ MeV
NaI	3.67	1.78	303	0.06	190	2)	
NaI(Tl)	3.67	1.85	410	0.25	100	3)	4×10 ⁴
CsI	4.51	1.80	310	0.01	6	3)	1
CsI(Tl)	4.51	1.80	565	1.0	45	3)	1.1×10^{4}
CaI(Na)	4.51	1.84	420	0.63	85	3)	
KI(Tl)	3.13	1.71	410	0.24/2.5	24	3)	1
⁶ LiI(Eu)	4.06	1.96	470-485	1.4	35	3)	1.4×10 ⁴
CaF ₂ (Eu)	3.19	1.44	435	0.9	50		
BaF ₂	4.88	1.49	190/220 310	0.0006 0.63	5 15		6.5×10^3 2×10^3
Bi ₄ Ge ₃ O ₁₂	7.13	2.15	480	0.30	10		2.8×10^{3}
CaWO ₄	6.12	1.92	430	0.5/20	50		1
ZnWO ₄	7.87	2.2	480	5.0	26		
CdWO ₄	7.90	2.3	540	5.0	40		1
CsF	4.65	1.48	390	0.005	5	3)	
CeF ₃	6.16	1.68	300 340	0.005 0.020	5	, , , , , , , , , , , , , , , , , , , ,	
ZnS(Ag)	4.09	2.35	450	0.2	150	4)	1
GSO	6.71	1.9	440	0.060	20		1
ZnO(Ga)	5.61	2.02	385	0.0004	40	4)	1
YSO	4.45	1.8	420	0.035	50		1
YAP	5.50	1.9	370	0.030	40		1

1) relative to NaI(Tl) 2) at 80 K 3) hygroscopic 4)polycrystalline

		PbWO₄	8.28	1.82	440, 530	0.01			100
--	--	-------	------	------	----------	------	--	--	-----

LAr	1.4	1.29 ⁵⁾	120-170	0.005 / 0.860		
LKr	2.41	1.40 ⁵⁾	120-170	0.002 / 0.085		
LXe	3.06	1.60 ⁵⁾	120-170	0.003 / 0.022		4×10^4

⁵⁾ at 170 nm

Organic scintillators

2. Organic scintillators: Monocrystals or liquids or plastic solutions

Molecular states

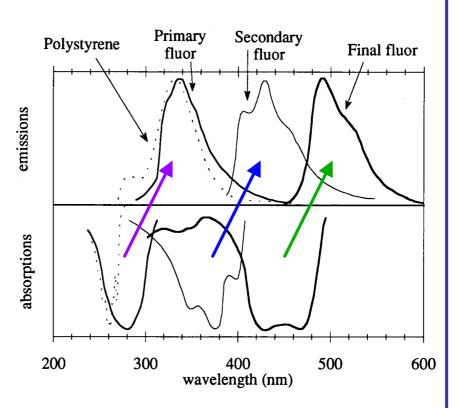
Monocrystals: naphtalene, anthracene, p-terphenyl....

Liquid and plastic scintillators

They consist normally of a solvent + secondary (and tertiary) fluors as wavelength shifters.

Fast energy transfer via non-radiative dipole-dipole interactions (Förster transfer).

- → shift emission to longer wavelengths
- → longer absorption length and efficient read-out device



Organic scintillators (backup)

Schematic representation of wave length shifting principle

(C. Zorn, Instrumentation In High Energy Physics, World Scientific,1992)

Some widely used solvents and solutes

	solvent	secondary	tertiary
		fluor	fluor
Liquid	Benzene	p-terphenyl	POPOP
scintillators	Toluene	DPO	BBO
	Xylene	PBD	BPO
Plastic	Polyvinylbenzene	p-terphenyl	POPOP
scintillators	Polyvinyltoluene	DPO	TBP
	Polystyrene	PBD	BBO
			DPS

After mixing the components together plastic scintillators are produced by a complex polymerization method.

Some inorganic scintillators are dissolved in PMMA and polymerized (plexiglas).

Organic scintillators

Table A6.3 Properties of some organic scintillators

	I abic 110.5	Tiopere	ics of some (n Banne sem	unatui s		
scintillator	density (g/cm ³)	index of refraction	wavelength of maximum emission (nm)	decay time constant (ns)	scintillation pulse height 1)	H/C ratio ²⁾	yield/ NaI
Monocrystals							
naphthalene	1.15	1.58	348	11	11	0.800	
anthracene	1.25	1.59	448	30-32	100	0.714	0.5
trans-stilbene	1.16	1.58	384	3-8	46	0.857	
p-terphenyl	1.23		391	6-12	30	0.778	
Plastics 3)							
NE 102 A	1.032	1.58	425	2.5	65	1.105	
NE 104	1.032	1.58	405	1.8	68	1.100	
NE 110	1.032	1.58	437	3.3	60	1.105	
NE 111	1.032	1.58	370	1.7	55	1.096	
Plastics 4)							
BC-400	1.032	1.581	423	2.4	65	1.103	
BC-404	1.032	1.58	408	1.8	68	1.107	
BC-408	1.032	1.58	425	2.1	64	1.104	
BC-412	1.032	1.58	434	3.3	60	1.104	
BC-414	1.032	1.58	392	1.8	68	1.110	
BC-416	1.032	1.58	434	4.0	50	1.110	
BC-418	1.032	1.58	391	1.4	67	1.100	
BC-420	1.032	1.58	391	1.5	64	1.100	
BC-422	1.032	1.58	370	1.6	55	1.102	
BC-422Q	1.032	1.58	370	0.7	11	1.102	
BC-428	1.032	1.58	480	12.5	50	1.103	
BC-430	1.032	1.58	580	16.8	45	1.108	
BC-434	1.049	1.58	425	2.2	60	0.995	

¹⁾ relative to anthracene

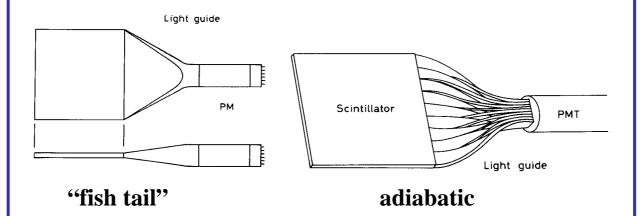
Organic scintillators have low Z (H,C). Low γ detection efficiency (practically only Compton effect). But high neutron detection efficiency via (n,p) reactions.

²⁾ ratio of hydrogen to carbon atoms

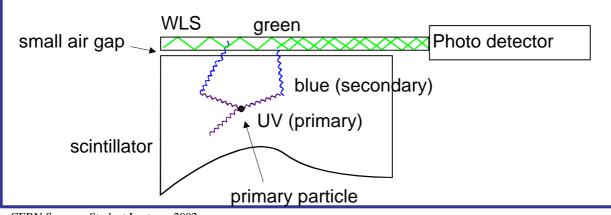
³⁾ Nuclear Enterprises Ltd. Sighthill, Edinburgh, U.K.

⁴⁾ Bicron Corporation, Newbury, Ohio, USA

Scintillator readout



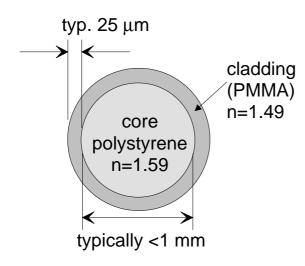
Scintillator readout

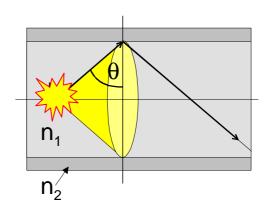

Readout has to be adapted to geometry and emission spectrum of scintillator.

Geometrical adaptation:

 Light guides: transfer by total internal reflection (+outer reflector)

wavelength shifter (WLS) bars



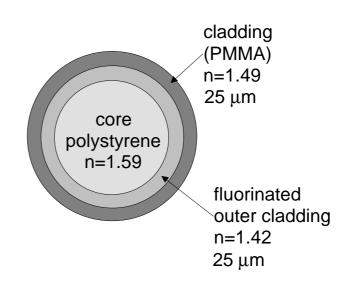

Scintillator readout

Optical fibers

light transport by total internal reflection

$$q \ge \arcsin \frac{n_2}{n_1} \approx 69.6^\circ$$
 $\frac{d\Omega}{4p} = 3.1\%$

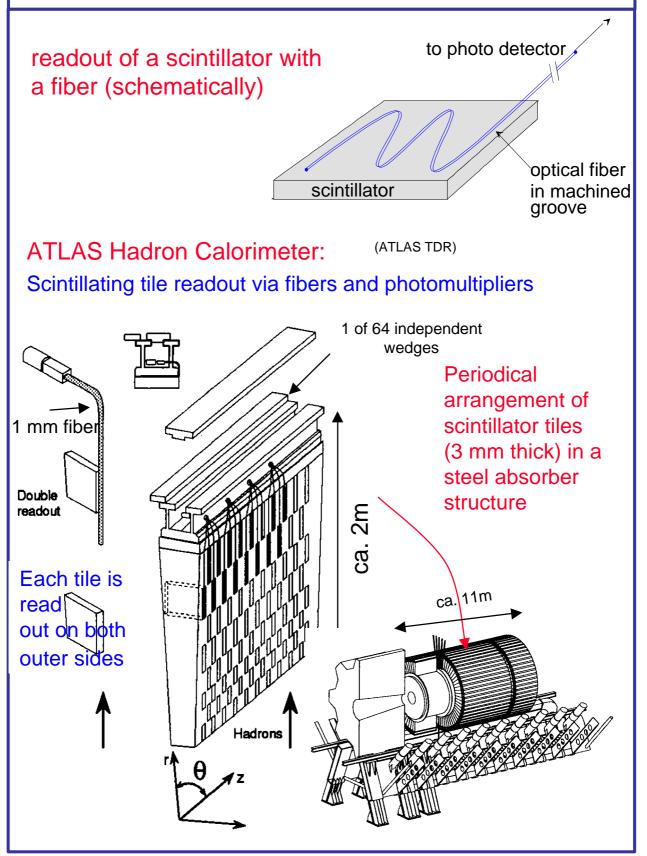
$$\frac{d\Omega}{4p} = 3.1\%$$
 in one direction


minimize n_{cladding}.

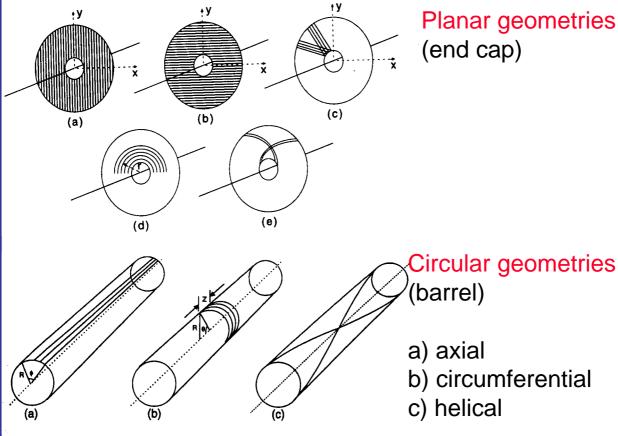
Ideal: air (n=1), but impossible due to surface imperfections

multi-clad fibres for improved aperture

$$\frac{d\Omega}{4\boldsymbol{p}} = 5.3\%$$


and absorption length: λ >10 m for visible light

Scintillator readout

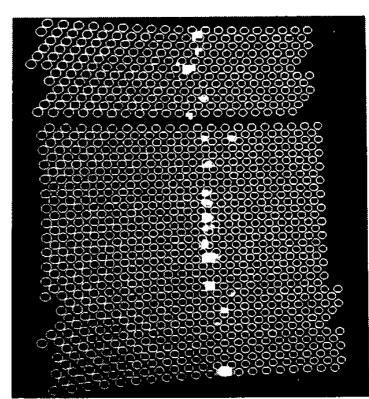


Scintillating fiber tracking

Scintillating fiber tracking

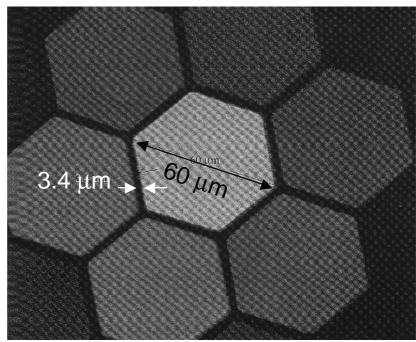
- Scintillating plastic fibers
- Capillary fibers, filled with liquid scintillator

(R.C. Ruchti, Annu. Rev. Nucl. Sci. 1996, 46,281)


- High geometrical flexibility
- Fine granularity
- Low mass
- lacktriangle Fast response (ns) (if fast read out) \rightarrow first level trigger

Scintillating fiber tracking

Charged particle passing through a stack of scintillating fibers (diam. 1mm)



UA2 (?)

Hexagonal fibers with double cladding.

Only central fiber illuminated.

Low cross talk!

(H. Leutz, NIM A 364 (1995) 422)

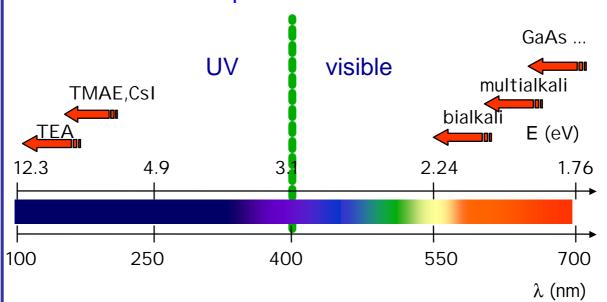


Photo Detectors

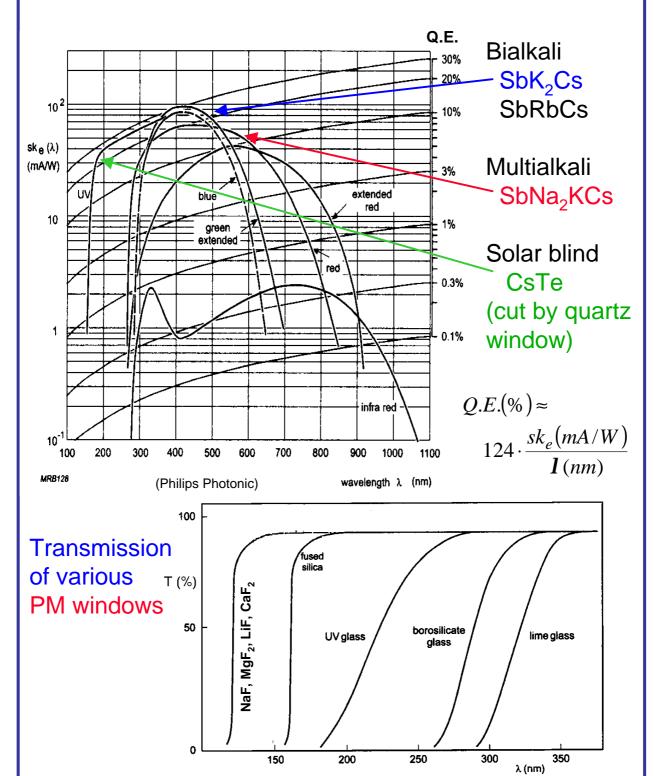
Purpose: Convert light into detectable electronics signal

Principle: Use Photoelectric Effect to convert photons to photoelectrons

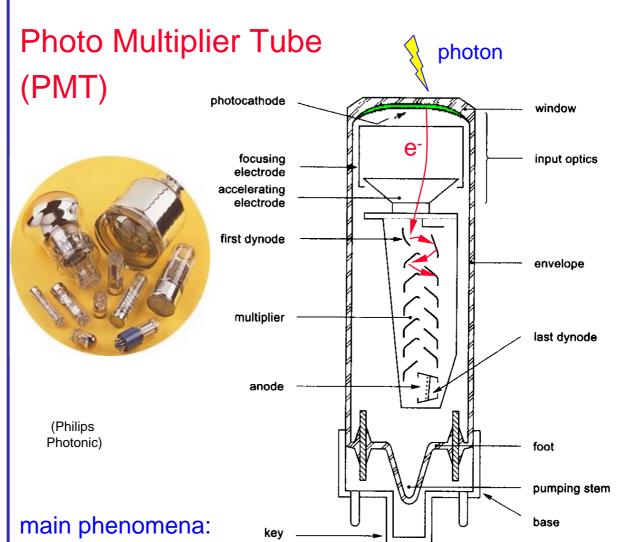
Threshold of some photosensitive material

standard requirement

• high sensitivity, usually expressed as quantum efficiency $Q.E. = N_{p.e.}/N_{photons}$


Main types of photodetetcors

- gas based devices (see RICH detectors)
- vacuum based devices
- solid state detectors

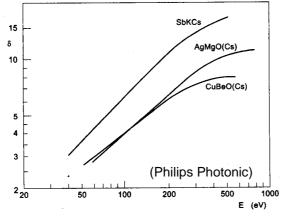


Quantum efficiencies of typical photo cathodes

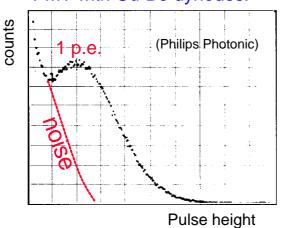
- photo emission from photo cathode.
- secondary emission from dynodes. dynode gain g=3-50 (f(E)) total gain $M=\prod_{i=1}^N g_i$ 10 dynodes with g=4

PM's are in general very sensitive to B-fields, even to earth field (30-60 μ T). μ -metal shielding required.

 $M = 4^{10} \approx 10^6$


Energy resolution of PMT's

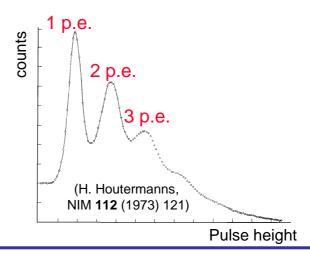
The energy resolution is determined mainly by the fluctuation of the number of secondary electrons emitted from the dynodes.


Poisson distribution: $P(\overline{n}, m) = \frac{\overline{n}^m e^{-m}}{m!}$

Relative fluctuation: $\frac{\mathbf{S}_n}{\overline{n}} = \frac{\sqrt{\overline{n}}}{\overline{n}} = \frac{1}{\sqrt{\overline{n}}}$

Fluctuations biggest, when \overline{n} small! \rightarrow First dynode!

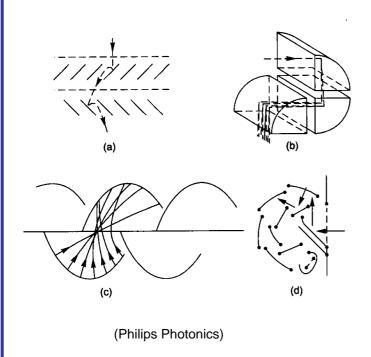
Single photons.
Pulse height spectrum of a PMT with Cu-Be dynodes.

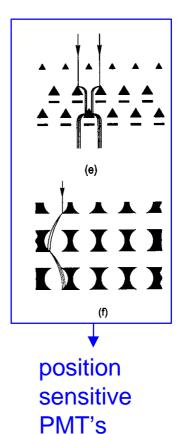

GaP(Cs)

Negative electron affinity (NEA)!

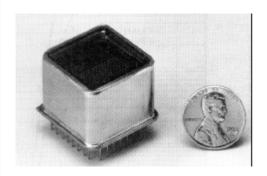
(Philips Photonic)

(Output Description of the content of the conte


Pulse height spectrum of a PMT with NEA dynodes.



Dynode configurations



Dynode configurations: (a) venetian blind, (b) box, (c) linear focusing, (d) circular cage, (e) mesh and (f) foil

Multi Anode PM

example: Hamamatsu R5900 series.

Up to 8x8 channels. Size: $28x28 \text{ mm}^2$. Active area $18x18 \text{ mm}^2$ (41%). Bialkali PC: Q.E. = 20% at λ_{max} = 400 nm. Gain $\approx 10^6$

Gain uniformity and cross-talk used to be problematic, but recently much improved.

Hybrid photo diodes (HPD)

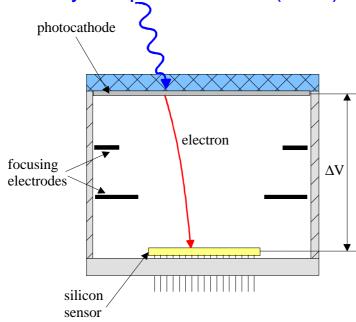
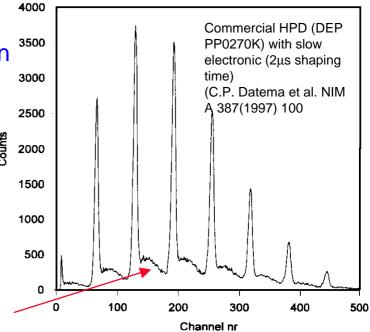


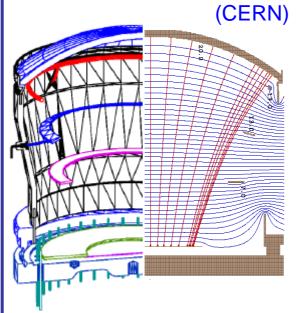
photo cathode + p.e. acceleration + silicon det. (pixel, strip, pads)

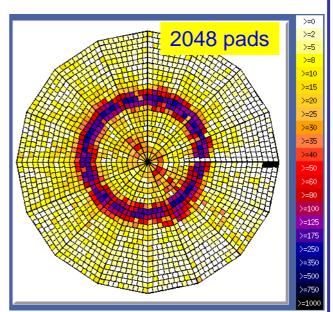

Photo cathode like in PMT, ΔV 10-20 kV

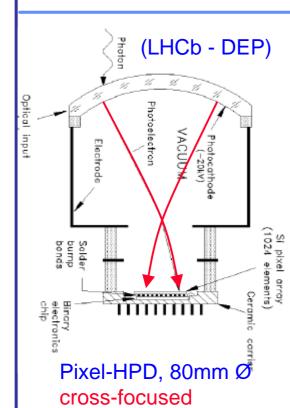
$$G = \frac{e\Delta V}{W_{Si}} = \frac{20 \text{ keV}}{3.6 \text{ eV}} \approx 5 \cdot 10^3 \quad \text{(for } \Delta V = 20 \text{ kV)}$$

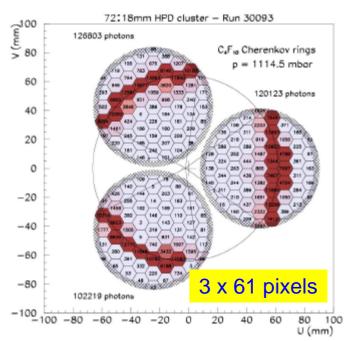
Single photon detection with high resolution

Poisson statistics with $\overline{n} = 5000$!


Background from electron backscattering from silicon surface




Cherenkov ring imaging with HPD's



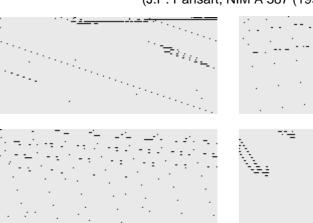
Pad HPD, Ø127 mm, fountain focused

test beam data, 1 HPD

test beam data, 3 HPDs

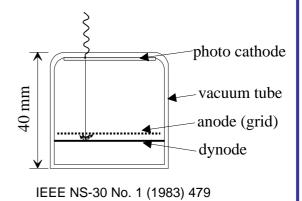
Photo diodes

P(I)N type


(sketches from J.P. Pansart, NIM A 387 (1997), 186)

High Q.E. (\approx 80% at $\lambda \approx$ 700nm), gain G = 1.

Avalanche Photo diodes (APD)


(J.P. Pansart, NIM A 387 (1997), 186)

High reverse bias voltage \approx 100-200V. High internal field \rightarrow avalanche multiplication. $G \approx 100(0)$

Photo triodes = single stage PMT (no Silicon!)

 $G \approx 10$. work in axial B-fields of 1T OPAL, DELPHI: readout of lead glass in endcap calorimeter G at $1T \approx 7-10$

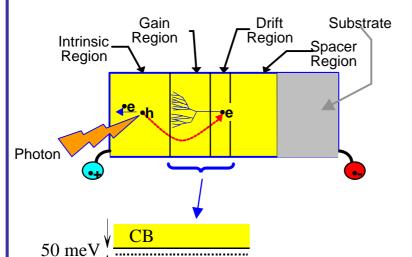


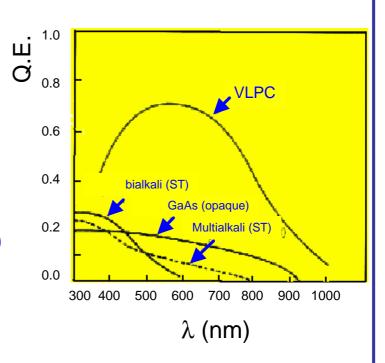
Photo Detectors (backup)

Visible Light Photo Counter VLPC

impurity band

Hole drifts towards highly doped drift region and ionizes a donor atom → free electron.

Multiplication by


Multiplication by ionization of further neutral donor atoms.

Si:As impurity band conduction avalanche diode

Operation at low bias voltage (7V)

VB

- High IR sensitivity
 → Device requires
 cooling to LHe
 temperature.
- Q.E. ≈ 70% around 500 nm.
- Gain up to 50.000!

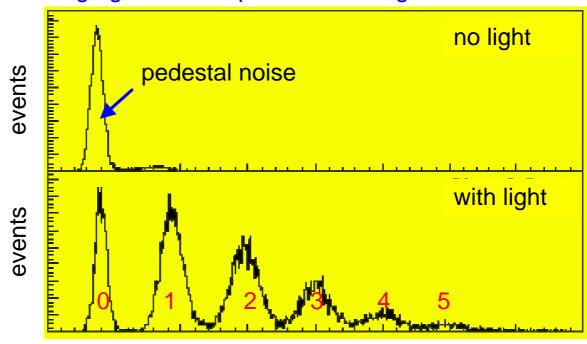
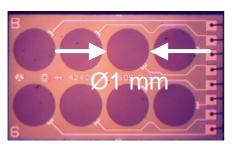


Photo Detectors (backup)



High gain → real photon counting as in HPD

ADC counts (a.u.)

Fermilab: D0 (D zero) fiber tracker (72.000 channels)

8 pixels per chip (vapour phase epitaxial growth)