

Multi wire proportional chamber (MWPC)

(G. Charpak et al. 1968, Nobel prize 1992)

Capacitive coupling of non-screened parallel wires? Negative signals on all wires? Compensated by positive signal induction from ion avalanche.

Typical parameters: L=5mm, d=1mm,a_{wire}=20mm.

Normally digital readout: spatial resolution limited to $\mathbf{s}_x \approx \frac{d}{\sqrt{12}}$ (d=1mm, σ_x =300 mm) Normally digital readout:

Address of fired wire(s) give only 1-dimensional information. Secondary coordinate

Secondary coordinate

 Crossed wire planes. Ghost hits. Restricted to low multiplicities. Also stereo planes (crossing under small angle).

Charge division. Resistive wires (Carbon,2kΩ/m).

Timing difference (DELPHI Outer detector, OPAL vertex detector)

1 wire plane
 + 2 segmented cathode signals
 cathode planes ^{{upper} plane}

Analog readout of cathode planes. $\rightarrow \sigma \approx 100 \ \mu m$

CERN Summer Student Lectures 2002 Particle Detectors

Drift and diffusion in gases

No external fields:

Electrons and ions will lose their energy due to collisions with the gas atoms \rightarrow thermalization

$$\mathbf{e} = \frac{3}{2}kT \approx 40 \text{ meV}$$

Undergoing multiple collisions, an originally localized ensemble of charges will diffuse

Particle Detectors

(U. Becker, in: Instrumentation in High Energy Physics, World Scientific)

The spatial resolution is not limited by the cell size \rightarrow less wires, less electronics, less support structure than in MWPC.

Christian Joram

II/10

Straw tubes: Thin cylindrical cathode, 1 anode wire

Example: DELPHI Inner detector 5 layers with 192 tubes each tube \emptyset 0.9 cm, 2 m long, wall thickness 30 μ m (Al coated polyester) wire \emptyset 40 μ m Intrinsic resolution ca. 50 μ m

Jet chambers: Optimized for maximum number of measurements in radial direction

Silicon detectors

Solid state detectors have a long tradition for energy measurements (Si, Ge, Ge(Li)). Si sensor

Here we are interested in their use as precision trackers !

Some characteristic numbers for silicon

- **•** Band gap: $E_g = 1.12 V$.
- Igh specific density (2.33 g/cm³) → ΔE/track length for M.I.P.'s.: 390 eV/μm ≈ 108 e-h/ μm (average)
- ∉ High mobility: μ_e =1450 cm²/Vs, μ_h = 450 cm²/Vs
- Detector production by microelectronic techniques \rightarrow small dimensions \rightarrow fast charge collection (<10 ns).</p>
- Is Rigidity of silicon allows thin self supporting structures.

Typical thickness 300 $\mu m \rightarrow \approx 3.2 \cdot 10^4$ e-h (average)

But: No charge multiplication mechanism!

- Application of a reverse bias voltage (about 100V) → the thin depletion zone gets extended over the full junction → fully depleted detector.
- Energy deposition in the depleted zone, due to traversing charged particles or photons (X-rays), creates free e⁻-hole pairs.
- Under the influence of the E-field, the electrons drift towards the n-side, the holes towards the p-side → detectable current.

CERN Summer Student Lectures 20 Particle Detectors

Segmenting also the n doped layer \rightarrow **Double sided** microstrip detector. But: SiO₂ Aluminum n⁺ silicon n⁻ silicon Positive charges in SiO₂ attract e⁻ in n⁻ layer. Short circuits between n⁺ strips. SiO₂ **Two solutions:** Aluminum Add p⁺ doped n⁺ silicon blocking strips p⁺ blocking strip n⁻ silicon SiO₂ Add Aluminum layer V<0 Aluminum on top of SiO_2 Negative biased MOSn⁺ silicon (metal oxide semiconductor) n⁻ silicon structure repelling e-

Christian Joram

II/23

Radiation damage in silicon sensors

However: Specification of absorbed dose / fluence is not sufficient. Damage depends both on particle type (e,π,n,γ .) and energy !

Many effects and parameters involved (not all well understood)!

2. Change of depletion voltage. Very problematic. 10³ 5000 1000 10^{2} type inversion 600 V (d = 30)500 "Donor 100 removal" 10^{1} 10^{14}cm^{-2} 50 "Acceptor 10 creation" 10^{0} eff 5 n - type p - type" 1 10-1 $10^{\overline{0}}$ $10^{\overline{3}}$ $10^{\overline{2}}$ 10⁻¹ 10^{1} $\Phi_{ m eq}$ $[10^{12} \text{ cm}^{-2}]$ [Data from R. Wunstorf 92] 3. Decrease of the charge collection efficiency p+ Charge trapping n in defects n How to cope with the radiation damage ? **Possible strategies:** · Geometrical: build sensors such that they stand high depletion voltage (500V) • Environmental: keep sensors at low temperature (\approx -10°C). \rightarrow Slower reverse annealing. Lower leakage current.

More advanced methods

• Defect engineering.

ROSE / RD48 http://cern.ch/rd48

Introduce specific impurities in silicon, to influence defect formation. Example Oxygen.

Diffusion Float Zone Oxygenated (DOFZ) silicon used in ATLAS pixel detector. Gain a factor 3.

RD39 http://cern.ch/rd39

 Cool detectors to cryogenic temperatures http://cern.ch/r (optimum around 130 k)

"zero" leakage current, good charge collection (70%) for heavily irradiated detectors (1.10¹⁵ n/cm²). "Lazarus effect"

New materials

RD42 http://cern.ch/rd42

Diamond. Grown by Chemical Vapor Deposition. Very large bandgap (≈ 6 eV). No doping and depletion required! Material is still rather expensive. Still more R&D needed.

New detector concepts
 "3D detectors" → "horizontal" biasing faster charge collection but difficult fabrication process

