6. Electroweak Phenomenology

- Inputs
- $Z \to f \bar{f}$, $W \to f_1 \bar{f}_2$
- Z Peak Asymmetries
- Sensitivity to Higher Scales
- Standard Model Fits: M_H
- $e^+e^- \rightarrow W^+W^-$, $e^+e^- \rightarrow ZZ$
- Higgs Search
- Quark Mixing
- CP Violation

$$G_F$$
 = (1.166 39 ± 0.000 01) × 10⁻⁵ GeV⁻²
 α^{-1} = 137.035 999 76 ± 0.000 000 50
 M_Z = (91.187 5 ± 0.002 1) GeV

$$\alpha^{-1}(M_Z^2) = 128.95 \pm 0.05$$

$$M_W^2 \sin^2 heta_W = rac{\pi \, lpha}{\sqrt{2} \, G_F}$$

 $\sin^2 heta_W = 1 - rac{M_W^2}{M_Z^2}$

 $M_W = 80.94 \text{ GeV}$ [Exp: 80.451 ± 0.033] (79.96)

 $\sin^2 \theta_W = 0.212$ (0.231)

Universal $W1\bar{\nu}_l$ Couplings

 $Br(W^- \to \tau^- \bar{\nu}_{\tau}) = (11.09 \pm 0.22)\%$

 $Br(W^- \to \mu^- \bar{\nu}_{\mu}) = (10.54 \pm 0.16)\%$

 $Br(W^- \to e^- \bar{\nu}_e) = (10.54 \pm 0.17)\%$

Experiment:

 $\mathsf{Br}(W^- \to l^- \bar{\nu}_l) \approx 10.8\%$

QCD: $N_C \left\{1 + \frac{\alpha_s(M_Z)}{\pi}\right\} \approx 3.115$

$$\mathsf{Br}(W^- \to l^- \bar{\nu}_l) \equiv \frac{\Gamma(W^- \to l^- \bar{\nu}_l)}{\Gamma(W^- \to \mathsf{all})} = \frac{1}{3 + 2N_C} = 11.1\%$$

$$\begin{split} \vec{u}_{j} &= \vec{u}, \vec{c} \\ \underbrace{W}_{}^{-} & \begin{pmatrix} d' \\ s' \end{pmatrix} \approx \begin{pmatrix} \cos \theta_{C} & \sin \theta_{C} \\ -\sin \theta_{C} & \cos \theta_{C} \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix} \end{split}$$

LEPTON UNIVERSALITY

CHARGED-CURRENT UNIVERSALITY

$$\begin{array}{|c|c|c|c|} & & |g_{\mu}/g_{e}| \\ B_{\tau \to \mu}/B_{\tau \to e} & 1.0006 \pm 0.0021 \\ B_{\pi \to e}/B_{\pi \to \mu} & 1.0017 \pm 0.0015 \\ B_{W \to \mu/e} & 1.000 \pm 0.011 \end{array}$$

$$\begin{array}{c|c} & |g_{\tau}/g_{\mu}| \\ B_{\tau \to e} \ \tau_{\mu}/\tau_{\tau} & 0.9995 \pm 0.0023 \\ \Gamma_{\tau \to \pi}/\Gamma_{\pi \to \mu} & 1.005 \pm 0.007 \\ \Gamma_{\tau \to K}/\Gamma_{K \to \mu} & 0.977 \pm 0.016 \\ B_{W \to \tau/\mu} & 1.026 \pm 0.014 \end{array}$$

	$ g_ au/g_e $		
$B_{ au ightarrow \mu} \ au_{\mu}/ au_{ au}$	1.0001 ± 0.0023		
$B_{W \to \tau/e}$	1.026 ± 0.014		

$$\frac{\Gamma_{\text{inv}}}{\Gamma_{ll}} \equiv \frac{\Gamma(Z \to \text{invisible})}{\Gamma(Z \to l^+ l^-)} = N_{\nu} \frac{\Gamma(Z \to \nu_l \bar{\nu}_l)}{\Gamma(Z \to l^+ l^-)}$$

$$= N_{\nu} \frac{2}{(1-4\sin^2\theta_W)^2+1} = 1.955 N_{\nu}$$
(1.989)

Experiment: $\frac{\Gamma_{inv}}{\Gamma_{ll}} = 5.942 \pm 0.016$

$$\rightarrow N_{\nu} = 3.04$$
 (2.99)

 $N_{
u}$ = 2.9841 \pm 0.0083

 $N_l = 1$, $N_q = N_C$

 $F_W = 2.09 \text{ GeV} , \Gamma_Z = 2.48 \text{ GeV}$ Exp: 2.12 (5) 2.495 (2)

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{8s} N_f \left\{ A \left(1 + \cos^2 \theta \right) + B \cos \theta - h_f \left[C \left(1 + \cos^2 \theta \right) + D \cos \theta \right] \right\}$$

$$N_l = 1$$
 , $N_q = N_C \left\{ 1 + \frac{\alpha_s(M_Z^2)}{\pi} + \ldots \right\}$

$$A = 1 + 2 v_e v_f \operatorname{Re}(\chi) + (v_e^2 + a_e^2) (v_f^2 + a_f^2) |\chi|^2$$

$$B = 4 a_e a_f \operatorname{Re}(\chi) + 8 v_e a_e v_f a_f |\chi|^2$$

$$C = 2 v_e a_f \operatorname{Re}(\chi) + 2 \left(v_e^2 + a_e^2 \right) v_f a_f |\chi|^2$$

$$D = 4 a_e v_f \operatorname{Re}(\chi) + 4 v_e a_e \left(v_f^2 + a_f^2\right) |\chi|^2$$

$$h_f = \pm 1$$
 , $\chi = \frac{G_F M_Z^2}{2\sqrt{2}\pi \alpha} \frac{s}{s - M_Z^2 + i s \Gamma_Z / M_Z}$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{8s} N_f \left\{ A \left(1 + \cos^2 \theta \right) + B \cos \theta - h_f \left[C \left(1 + \cos^2 \theta \right) + D \cos \theta \right] \right\}$$

$$\sigma = \frac{4 \pi \alpha^2}{3 s} N_f A$$

$$\mathcal{A}_{\mathsf{FB}}(s) \equiv \frac{N_F - N_B}{N_F + N_B} = \frac{3}{8} \frac{B}{A}$$
$$\mathcal{A}_{\mathsf{Pol}}(s) \equiv \frac{\sigma^{(h_f = +1)} - \sigma^{(h_f = -1)}}{\sigma^{(h_f = +1)} + \sigma^{(h_f = -1)}} = -\frac{C}{A}$$
$$\mathcal{A}_{\mathsf{FB}}^{\mathsf{Pol}}(s) \equiv \frac{N_F^{(+1)} - N_F^{(-1)} - N_B^{(+1)} + N_B^{(-1)}}{N_F^{(+1)} + N_F^{(-1)} + N_B^{(+1)} + N_B^{(-1)}} = -\frac{3}{8} \frac{D}{A}$$

$$\sigma = \frac{12\pi}{M_Z^2} \frac{\Gamma_e \Gamma_f}{\Gamma_Z^2} \quad ; \quad \Gamma_f \equiv \Gamma(Z \to f\bar{f})$$

$$\mathcal{A}_{\mathsf{FB}}(s) = rac{3}{4} \ \mathcal{P}_e \ \mathcal{P}_f$$

$$\mathcal{A}_{\mathsf{Pol}}(s) = \mathcal{P}_f$$
 ; $\mathcal{A}_{\mathsf{FB}}^{\mathsf{Pol}}(s) = \frac{3}{4} \mathcal{P}_e$

$$\mathcal{A}_{LR}(s) \equiv \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\mathcal{P}_e$$
; $\mathcal{A}_{FB}^{LR}(s) = -\frac{3}{4} \mathcal{P}_f$

$$\mathcal{P}_f \equiv -A_f = rac{-2 v_f a_f}{|v_f|^2 + |a_f|^2}$$

Final Polarization Only Available for $f = \tau$ A₁ Sensitive to Higher Order Corrections

$$|v_l| = rac{1}{2} \left| -1 + 4 \sin^2 \theta \right| \ll 1$$

Higher Order Corrections

Sensitive to Heavier Particles

TOP QUARK, **HIGGS**

LEPEWWG, May 2002

 $\alpha(M_Z^2)^{-1} = 128.95 \pm 0.05$

Evidence of Electroweak Corrections

 m_t = (174.3 ± 5.1) GeV ; M_H = $\left(300 \, {}^{+700}_{-186}
ight)$ GeV

Low Values of M_H Preferred

 $m_t = (174.3 \pm 5.1) \text{ GeV}$; $M_H = (300 \substack{+700 \\ -186}) \text{ GeV}$

Heavy Quarks Favour High M_{H} Leptons Favour Low M_{H}

$\Box \Box \Box \nabla \nabla \nabla \nabla$, $\nabla \Box \Delta Z = 2002$

LEPEWWG, May 2002

114 GeV < M_H < 196 GeV

(95% CL)

Measurement		Pull	$(O^{meas} - O^{fit}) / \sigma^{meas}$
			<u>-3 -2 -1 0 1 2 3</u>
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	27	•
m _z [GeV]	91.1875 ± 0.0021	.01	
Г _Z [GeV]	2.4952 ± 0.0023	42	-
σ_{had}^{0} [nb]	41.540 ± 0.037	1.63	
R _I	20.767 ± 0.025	1.05	
A ^{0,I} _{fb}	0.01714 ± 0.00095	.70	-
$A_{I}(P_{\tau})$	0.1465 ± 0.0033	53	-
R _b	0.21646 ± 0.00065	1.06	
R _c	0.1719 ± 0.0031	11	•
A ^{0,b} _{fb}	0.0994 ± 0.0017	-2.64	
A ^{0,c} _{fb}	0.0707 ± 0.0034	-1.05	
A _b	0.922 ± 0.020	64	-
A _c	$\textbf{0.670} \pm \textbf{0.026}$.06	
A _I (SLD)	0.1513 ± 0.0021	1.50	
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	.86	_
m _w [GeV]	80.451 ± 0.033	1.73	
Г _w [GeV]	2.134 ± 0.069	.59	
m _t [GeV]	174.3 ± 5.1	08	•
sin ² θ _w (νN)	0.2277 ± 0.0016	3.00	
Q _w (Cs)	-72.39 ± 0.59	.84	

Evidence of Gauge Self-Interactions

$$e^+e^- \rightarrow Z Z$$

Branching ratios and total decay width

(D. Denegri)

V_{ij} DETERMINATIONS

CKM entry	Value	Source
$ V_{ud} $	0.9740 ± 0.0010	Nuclear β decay
	0.9725 ± 0.0013	$n ightarrow p e^- \overline{ u}_e$
	0.9734 ± 0.0008	
$ V_{us} $	0.2196 ± 0.0026	K _{e3}
	0.2176 ± 0.0026	Hyperon decays
$ V_{cd} $	0.224 ± 0.016	$ u d \to c X $
$ V_{cs} $	1.04 ± 0.16	$D \to \bar{K} e^+ \nu_e$
	0.97 ± 0.11	$W^+ \to c \overline{s}$
$ V_{cb} $	0.0421 ± 0.0022	$B \to D^* l \bar{\nu}_l$
	0.0404 ± 0.0011	$b ightarrow c l ar{ u}_l$
	0.0412 ± 0.0020	
$ V_{ub} $	0.0033 ± 0.0006	$B o \rho l \bar{\nu}_l$
	0.0041 ± 0.0006	$b ightarrow u l ar{ u}_l$
	0.0036 ± 0.0007	
$ V_{tb} /\sqrt{\sum_{q} V_{tq} ^2}$	$0.97 \stackrel{+ 0.16}{- 0.12}$	t ightarrow b W/q W

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9957 \pm 0.0019$ $\sum_j \left(|V_{uj}|^2 + |V_{cj}|^2 \right) = 2.039 \pm 0.025$ (LEP)

- Complex Phases
- Interferences

Complex phases in Yukawa couplings only:

$$\mathcal{L}_{Y} = \sum_{jk} \left\{ \left(\bar{u}_{j}^{\prime}, \bar{d}_{j}^{\prime} \right)_{L} \left[c_{jk}^{(d)} \left(\begin{array}{c} \phi^{(+)} \\ \phi^{(0)} \end{array} \right) d_{kR}^{\prime} + c_{jk}^{(u)} \left(\begin{array}{c} \phi^{(0)\dagger} \\ -\phi^{(+)\dagger} \end{array} \right) u_{kR}^{\prime} \right] \right\}$$

$$\mathbf{V} \quad SSB \quad \left[\langle \phi^{(0)} \rangle = v/\sqrt{2} \right]$$

$$\mathcal{L}_{Y} = - \left(1 + \frac{H}{v} \right) \frac{v}{\sqrt{2}} \left\{ \bar{d}_{jL}^{\prime} c_{jk}^{(d)} d_{kR}^{\prime} + \bar{u}_{jL}^{\prime} c_{jk}^{(u)} u_{kR}^{\prime} + \text{h.c.} \right\}$$

$$\mathbf{L}_{Y} = - \left(1 + \frac{H}{v} \right) \left\{ \bar{d}_{jL} m_{dj} d_{jR}^{\prime} + \bar{u}_{jL} m_{uj} u_{jR} + \text{h.c.} \right\}$$

$$\mathcal{L}_{CC} = \frac{g}{2\sqrt{2}} W_{\mu}^{\dagger} \sum_{ij} \bar{u}_{i} \gamma^{\mu} (1 - \gamma_{5}) V_{ij} d_{j} + \text{h.c.}$$

The CKM matrix $\,V_{ij}\,$ is the only source of $\,{\cal CP}\,$

Unitarity: $V \cdot V^{\dagger} = V^{\dagger} \cdot V = 1$

 $\frac{\mathbf{N_f} = 2}{V} = \begin{bmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{bmatrix} \longrightarrow \operatorname{No} CP$

 ${
m N_f}=3$: (CKM) 3 angles, 1 phase

 $\begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{bmatrix}$

 $\approx \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A \lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A \lambda^2 \\ A \lambda^3 (1 - \rho - i\eta) & -A \lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$

 $c_{ij} \equiv \cos \theta_{ij}$; $s_{ij} \equiv \sin \theta_{ij}$ (i, j = 123)

 $\lambda \approx \sin heta_c \approx 0.223$; $A \approx 0.83$; $\sqrt{
ho^2 + \eta^2} \approx 0.40$

 $\delta_{13} \neq 0 \quad (\eta \neq 0) \qquad \longrightarrow \qquad C/r$

THE STANDARD THEORY OF FUNDAMENTAL INTERACTIONS

${ m SU(3)}_{ m C}~\otimes~{ m SU(2)}_{ m L}~\otimes~{ m U(1)}_{ m Y}$

Electroweak + Strong Forces

- Gauge Symmetry \longrightarrow Dynamics
- 3 Gauge Parameters: $\alpha_s(M_Z^2)$, α , θ_W
- All Known Experimental Facts Explained
- Problem with Mass Scales / Mixings:
 - 15 Additional Parameters
 - Why 3 Families ?
 - Why Left \neq Right ?
 - Why $m_t > M_Z$?
 - Does the Higgs Exist ?
 - Flavour Mixing
 - \mathcal{CP} Violation
 - Neutrino Masses / Oscillations