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Feynman rules of QCD

e Feynman rules follow from QCD Lagrangian
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F4 op 1s field strength tensor for spin-1 gluon field Al
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Capital indices A, B, C run over 8 colour degrees of freedom of the gluon field.
Third ‘non-Abelian’ term distinguishes QCD from QED, giving rise to triplet
and quartic gluon self-interactions and ultimately to asymptotic freedom.

¢ QCD coupling strength is o = ¢?/47. Numbers f48¢ (A, B,C =1, ...,8) are
structure constants of the SU(3) colour group. Quark fields ¢, (a = 1,2, 3) are in
triplet colour representation, while gluon fields .\A% are in adjoint representation.

® [ is covariant derivative:

(Da)gy = Oabab+ig (t°AF),
(Da) ap Oobap +ig(TCAS) an



e ¢ and T are matrices in the fundamental and adjoint representations of SU(3),
respectively:

where (T4)pc = —ifAB¢. We use the metric g*° = diag(1,-1,-1,-1) and set
h =c=1. P is symbolic notation for v*D,. Normalisation of the ¢ matrices is

1
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e SU(N) matrices obey the relations:
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Thus C'p = w and C 4 = 3 for SU(3).



e Use free piece of QCD Lagrangian to obtain inverse quark and gluon

propagators.

[J Quark propagator in momentum space obtained by setting 0% = —ip® for an
incoming field. Result is in Table 1. The ¢¢ prescription for pole of
propagator is determined by causality, as in QED.

[1 Gluon propagator impossible to define without a choice of gauge. The choice
1 AN 2
hmmcmmlmu&sm — |m AQQ.\FQV
defines covariant gauges with gauge parameter \. Inverse gluon propagator is

then

. 1
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(Check that without gauge-fixing term this function would have no inverse.)

Resulting propagator is in Table 1. A =1 (0) is Feynman (Landau) gauge.
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e Gauge fixing explicitly breaks gauge invariance. However, in the end physical
results will be independent of gauge. For convenience we usually use Feynman

gauge.

e In non-Abelian theories like QCD, covariant gauge-fixing term must be
supplemented by a ghost term which we do not discuss here. Ghost field, shown
by dashed lines in Table 1, cancels unphysical degrees of freedom of gluon which

would otherwise propagate in covariant gauges.



Running coupling

e (Consider dimensionless physical observable R which depends on a single large
energy scale, () > m where m is any mass. Then we can set m — 0 (assuming
this limit exists), and dimensional analysis suggests that R should be

independent of ().

e This is not true in quantum field theory. Calculation of R as a perturbation
series in the coupling ag = ¢g° /4 requires renormalization to remove ultraviolet
divergences. This introduces a second mass scale u — point at which
subtractions which remove divergences are performed. Then R depends on the

ratio ()/p and is not constant. The renormalized coupling ag also depends on pu.

e But u is arbitrary! Therefore, if we hold bare coupling fixed, R cannot depend
on p. Since R is dimensionless, it can only depend on Q%/u? and the

renormalized coupling ag. Hence




e Introducing

2
r=ln A@L o) = w2 2%

1 op?
we have
0 0
This renormalization group equation is solved by defining running coupling
as(Q):
as(Q)
T = ——, oas(p) = ag .
/ w B W
Then
@QmAQV o %QmAQV o QAQmAQVV
or blas(Q)) das Blas)

and hence R(Q*/p?, as) = R(1,(Q)). Thus all scale dependence in R comes
from running of as(Q).

e We shall see QCD is asymptotically free: ag(@Q) — 0 as Q — oo. Thus for large
() we can safely use perturbation theory. Then knowledge of R(1,ag) to fixed

order allows us to predict variation of R with ().



Beta function

e Running of of the QCD coupling ag is determined by the 8 function, which has
the expansion

Blas) = Iwgmﬁ + b ag) + GAQMV
(11C4 — 2Ny) (17C% — 5C ANy — 3CpNy)

b =
127 2m(11C 4 — 2Ny) “

b =

where Ny is number of “active” light flavours. Terms up to O(a2) are known.

e Roughly speaking, quark loop diagram (a) contributes negative Ny term in b,
while gluon loop (b) gives positive C'4 contribution, which makes 8 function

Eg@é%

e QED S function is a) b)

1

E@@UAQV = wﬂQw + ...

Thus b coefficients in QED and QCD have opposite signs.

negative overall.



e From previous section,

das(Q)
oT

Neglecting b’ and higher coefficients gives

%(Q) =1 +QMMN§ T Ammv |

— —ba2(@Q)[1 +Vas(Q)] + O(ak).

e As () becomes large, as(@Q) decreases to zero: this is asymptotic freedom.
Notice that sign of b is crucial. In QED, b < 0 and coupling increases at large Q).

Including next coefficient b’ gives implicit equation for ag(Q):

o as(Q) (s ()
=@ mm (e (T ram)




e What type of terms does the solution of the renormalization group equation
take into account in the physical quantity R?

Assume that R has perturbative expansion

Solution R(1,ag(Q)) can be re-expressed in terms of ag(u):

R(1,05(Q)) = QmC@VMAIC.‘.AQmAPV@ﬂVu

— () T — as(p)br + a2 () (br)? + .. %

Thus there are logarithms of Q?/u? which are automatically resummed by using
the running coupling. Neglected terms have fewer logarithms per power of as.



Lambda parameter

e Perturbative QCD tells us how ag(Q) varies with @), but its absolute value has
to be obtained from experiment. Nowadays we usually choose as the
fundamental parameter the value of the coupling at () = Mz, which is simply a
convenient reference scale large enough to be in the perturbative domain.

e Also useful to express as(Q) directly in terms of a dimensionful parameter
(constant of integration) A:

HH _ — — _— .
>w QwA@V @Amﬁv QwAQV @&MAH |_| QH |_| .. v

Then (if perturbation theory were the whole story) ag(Q)) — oo as Q — A.
More generally, A sets the scale at which ag(Q) becomes large.

e In leading order (LO) keep only first S-function b:

B 1
~ bIn(Q?/A?)
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e In next-to-leading order (NLO) include also b':

% + 0 EAH NMMNWVV = ESAWV.

This can be solved numerically, or we can obtain an approximate solution to

second order in 1/log(Q?/A?):

_ 1 T V' InIn(Q?/A?)
bIn(Q?/A?) b In(Q*/A?)

This is Particle Data Group (PDG) definition.

as(Q) M (NLO).

e Note that A depends on number of active flavours N¢. ‘Active’ means m, < Q).
Thus for 5 < @) < 175 GeV we should use Ny = 5. See ESW for relation
between A’s for different values of Ny.



Renormalization schemes

e A also depends on renormalization scheme. Consider two calculations of the

renormalized coupling which start from the same bare coupling a?:

A _ A 0 B _ 7B 0
oy =Z7ay, o =27 0q

Infinite parts of renormalization constants Z4 and ZZ must be same in all
orders of perturbation theory. Therefore two renormalized couplings must be

related by a finite renormalization:

of =al(14+ o +..).

e Note that first two S-function, coefficients, b and b, are unchanged by such a

transformation: they are therefore renormalization-scheme independent.

e Two values of A are related by

B
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This must be true for all (), so take () — 0o, to obtain
C1
2b

Thus relations between different definitions of A are given by the one-loop

AB = A exp

calculation that fixes c;.

Nowadays, most calculations are performed in modified minimal subtraction
(MS) renormalization scheme. Ultraviolet divergences are ‘dimensionally
regularized’ by reducing number of space-time dimensions to D < 4:

d*k L. A2
1 — (1) A—2¢
(27) (27)

D
2

preserve dimensions of couplings and fields.

\ dPk
(k2 + m2)?2

lead to poles at € = 0. The minimal subtraction prescription is to subtract poles

where ¢ = 2 — <. Note that renormalization scale p still has to be introduced to

Loop integrals of form

and replace bare coupling by renormalized coupling as(u). In practice poles



always appear in combination

1
; + In(47) — vg,

(Euler’s constant vg = 0.5772...). In modified minimal subtraction scheme
In(47) — vg is subtracted as well. From argument above, it follows that

MS — >§mmﬁb§ﬁ.lexm_\w = 2.66 >§m

Value of ag at mass of Z is [Bethke, hep-ex/0211012]
as(My) = 0.1183 + 0.0027

corresponding to a preferred value of Ags (for Ny = 5) in the range

181 MeV < Ag5(5) < 245 MeV.

Uncertainty in ag propagates directly into QCD cross sections. Thus we expect
at least errors of ~ 3% in prediction of cross sections which begin in order as.



e Measurements of ag are reviewed in ESW. A more recent compilation by Bethke

is shown below. Evidence for logarithmic fall-off of ag(@) is persuasive.
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e Using the formula for running as(@)) to rescale all measurements to () = My

gives excellent agreement.
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Nonperturbative QCD

e Corresponding to asymptotic freedom at high momentum scales (short
distances), we have infrared slavery: as(Q) becomes large at low momenta (long
distances). Perturbation theory (PT) not reliable for large ag, so

nonperturbative methods (e.g. lattice) must be used.

e Important low momentum-scale phenomena:

[ Confinement: partons (quarks and gluons) found only in colour-singlet
bound states (hadrons), size ~ 1 fm. If we try to separate them, it becomes

energetically favourable to create extra partons, forming additional hadrons.

[1 Hadronization: partons produced in short-distance interactions reorganize

themselves (and multiply) to make observed hadrons.

e Note that confinement is a static (long-distance) property of QCD, treatable by
lattice techniques whereas hadronization is a dynamical (long timescale)

phenomenon: only models are available at present (see later).



Infrared divergences

e FEven in high-energy, short-distance regime, long-distance aspects of QCD
cannot be ignored. Soft or collinear gluon emission gives infrared divergences in
PT. Light quarks (m, < A) also lead to divergences in the limit m, — 0 (mass

singularities).

(a) (b)

[1 Spacelike branching: gluon splitting on incoming line (a)
pi = —E,E,(1—cosf) <0.

Propagator factor 1/p? diverges as E. — 0 (soft singularity) or § — 0
(collinear or mass singularity). If @ and b are quarks, inverse propagator

factor is
2 2 __ m_ m — % :
No@ —m. = a OAH_. @Q COS v m )

Hence E. — 0 soft divergence remains; collinear enhancement becomes a



divergence as v, — 1, i.e. when quark mass is negligible. If emitted parton c
is a quark, vertex factor cancels E. — 0 divergence.

[ Timelike branching: gluon splitting on outgoing line (b)
p2 = EyE.(1—cosf) > 0.

Diverges when either emitted gluon is soft (Ep or E. — 0) or when opening
angle # — 0. If b and/or ¢ are quarks, collinear/mass singularity in m; — 0
limit. Again, soft quark divergences cancelled by vertex factor.

e Similar infrared divergences in loop diagrams, associated with soft and/or
collinear configurations of virtual partons within region of integration of loop

momenta.

e Infrared divergences indicate dependence on long-distance aspects of QCD not
correctly described by PT. Divergent (or enhanced) propagators imply
propagation of partons over long distances. When distance becomes comparable
with hadron size ~ 1 fm, quasi-free partons of perturbative calculation are
confined /hadronized non-perturbatively, and apparent divergences disappear.

e (an still use PT to perform calculations, provided we limit ourselves to two

classes of observables:



[] Infrared safe quantities, i.e. those insensitive to soft or collinear branching.
Infrared divergences in PT calculation either cancel between real and virtual
contributions or are removed by kinematic factors. Such quantities are
determined primarily by hard, short-distance physics; long-distance effects
give power corrections, suppressed by inverse powers of a large momentum

scale.

[1 Factorizable quantities, i.e. those in which infrared sensitivity can be
absorbed into an overall non-perturbative factor, to be determined

experimentally.

e In either case, infrared divergences must be reqularized during PT calculation,

even though they cancel or factorize in the end.

[] Gluon mass regularization: introduce finite gluon mass, set to zero at end of

calculation. However, gluon mass breaks gauge invariance.

[I Dimensional regularization: analogous to that used for ultraviolet
divergences, except we must increase dimension of space-time, € = 2 — % < 0.

Divergences are replaced by powers of 1/e. See example in Lecture 2.



Summary of Lecture 1

QCD is SU(3) gauge theory of quarks (3 colours) and gluons (8 colours,

self-interacting).

Since renormalization introduces (arbitrary) scale u, dimensionless quantities

are not in general scale-independent.
QCD is asymptotically free: running coupling as(Q) — 0 as Q — oc.
as(Mz) ~ 0.118 in 5-flavour MS renormalization scheme.

Perturbative QCD has infrared singularities due to collinear parton or soft gluon
emission. Hence we can only calculate infrared safe or factorizable quantities

using perturbation theory.



