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SLHC Detector EnvironmentSLHC Detector Environment

LHC                SLHC

√s                                     14 TeV             14 TeV
L                                      1034 1035

100                   1000 

Bunch spacing dt 25 ns                12.5 ns 

N. interactions/x-ing ~ 20                    ~ 100

dNch/dη per x-ing ~ 100                  ~ 500

Tracker occupancy             1                    5
Pile-up noise                      1                   ~2.2
Dose central region            1                     10

Bunch spacing reduced 2x. Interactions/crossing 
increased 5 x. Pileup noise increased by 2.2x if 
crossings are time resolvable.

2/( sec)cm ⋅ 2/( sec)cm ⋅
1 /fb yr− 1 /fb yr−

Ldt∫
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VLHC/ Eloisatron Detector EnvironmentVLHC/ Eloisatron Detector Environment

LHC                VLHC

√s                                     14 TeV             100 TeV
L                                      1034 1034

100                   100

Bunch spacing dt 25 ns                19 ns 

N. interactions/x-ing ~ 20                   ~ 25**

dNch/dη per x-ing ~ 100                 ~ 250**

Tracker occupancy             1                    2.5**
Pile-up noise                      1                    2.5**
Dose central region            1                    5**

** 130 mB inelastic cross section, <Nch> ~ 10, <Et> = 1GeV

2/( sec)cm ⋅ 2/( sec)cm ⋅
1 /fb yr− 1 /fb yr−

Ldt∫
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ATLAS  CalorimetersATLAS  Calorimeters
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ATLAS CalorimeterATLAS Calorimeter

TileCal
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ATLAS LAR ATLAS LAR HadronHadron EndCapEndCap
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ATLAS FCALATLAS FCAL
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ATLAS FCALATLAS FCAL
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ATLAS ATLAS TilecalTilecal

Fe/Scint/WLS fiber

4:1 Fe:Scint
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ATLAS TILECALATLAS TILECAL

36 modules of +/-
endcaps, central 
wheel
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LHCB HCALLHCB HCAL
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LHCB LHCB HadronHadron CalorimeterCalorimeter
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CMS CMS HCALsHCALs
Had Barrel: HB

Had Endcaps:HE

Had Forward: HF

HB

HE

HF

HO
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HCAL : HE and HBHCAL : HE and HB

HE HB
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CMS HB CalorimeterCMS HB Calorimeter
Sampling calorimeter:   brass (passive)  &  scintillator (active)
Coverage: | η| < 1 . 3
D e p t h :               5 . 8  λint ( a t  η= 0 ) segmentation: φ x  η =
π resolution: ~  1 2 0  % /                              0 . 0 8 7 x 0 . 0 8 7
Completed & assembled 17 layers longitudinally,                      

φ x η = 4 x 16 towers

20o

E

φ
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Completed, assembled, 
HE-1 installed

Sampling calorimeter:   brass (passive)  &  scintillator (active)
Coverage: 1.3<|η|<3
Depth: 10  λint segmentation: φ x  η =
π resolution: ~  12 0 % /                            0 .0 8 7 x 0 .0 8 7E

20o

19 layers 
longitudinally  

CMS HE CalorimeterCMS HE Calorimeter
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Optical Design for CMS Optical Design for CMS HCALsHCALs

Common Technology for HB, HE, HO
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HF detectorHF detector

HAD (143 cm)

EM (165 cm)

5mm
To cope with high radiation levels (>1 
G rad accu m u lated in 10  y ears)  the 
active part is  Q u artz  f ib ers:  the 
energy  m easu red throu gh the 
C erenk ov light generated b y  shower 
particles.

Iron calorimeter 

C ov ers   5  >  ηηηη >  3  
T otal of  1 7 2 8  tow ers ,  i. e.

2  x  4 3 2  tow ers  f or E M  and  H A D
ηηηη x φφφφ s eg mentation ( 0 . 1 7 5  x  0 . 1 7 5 )
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Fibers in the HF absorberFibers in the HF absorber
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HF Fiber stuffing at CERNHF Fiber stuffing at CERN
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Issues for SLHCIssues for SLHC
Radiation Damage

Rate Effects

Bunch ID determination
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Scintillator Scintillator -- Dose/DamageDose/Damage

Scintillator under irradiation forms 
Color centers which reduce the  
Collected light output (transmission loss). 
 
LY ~ exp[-D/Do], Do ~ 4 Mrad 

Current operational limit ~ 5 Mrad
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Radiation damage to Radiation damage to scintillatorsscintillators

0 1 2 3 4 5
10

-2

10
-1

10
0

10
1

10
2

10
3 Dose in ECAL and HCAL for L = 10

35
 and One Year

η

D
os

e(
M

ra
d)

Barrel doses are not a problem. For the endcaps a 
technology change may be needed for 2 < |y| < 3 for 
the CMS HCAL.

Dose per year at SLHV

ECAL

HCAL



J. Freeman   Erice  Oct 3, 2003 25

Liquid Liquid ArAr IonizationIonization

At SLHC, ATLAS LAR will stop working at η~ 1.5   
Switch to liquid Xe, ?
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CMS HB Pulse ShapeCMS HB Pulse Shape
100 GeV electrons. 25ns bins. Each histo is average 
pulse shape, phased +1ns to LHC clock

12 ns difference between circled histo’s� no 
problem with bunch ID
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Timing using calorimeter pulse shapeTiming using calorimeter pulse shape
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CMS HE

Calculated event time (vertical scale) vs actual event time. CMS HE, 
100GeV pions. Also works for lAr. DO timing resolution 4ns/E (in 
GeV). Watch pile-up though. The faster the calorimeter, the less 
important pile-up will be.

2003 Test Beam
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What about ATLAS? What about ATLAS? 

300 GeV π 
2003 Test Beam, 1ns bins

Atlas lAr EM Calorimeter
CMS HE Calorimeter

Not so different, after 
shaping. Bunch ID should 
be no problem
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HF HF CerenkovCerenkov Calorimeter Pulse ShapeCalorimeter Pulse Shape

25 ns

CMS HF 
Calorimeter 
2003 Test Beam

Intrinsically 
very fast
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ATLAS/CMS at SLHCATLAS/CMS at SLHC
Both detectors will have problems in the 
endcap region.

ATLAS � rate problems. Replace lAr for 
η>1.5 ?

CMS � radiation damage problems in 
endcap. New scintillators? Or new 
technology?

� New R&D
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Profitable R&D Directions?Profitable R&D Directions?
Cerenkov calorimeters are rad-hard and fast �
good candidates for future colliders

Quartz fiber or plate

Gas cerenkov

New photon detectors � low cost, small, rad-hard
Red-sensitive HPDs

Geiger-mode photodiodes

New scintillator materials � rad-hard

New directions: 
“Spacal” with liquid scintillator capillaries coupled to 
quartz fiber light guides?
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Gas Cerenkov LasagnaGas Cerenkov Lasagna
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Gas Cerenkov operationGas Cerenkov operation

The Cherenkov light is 
generated by shower 
particles that cross gas gaps 
between absorber elements.

• Shower particles co-move with the Cherenkov light as two 
overlapped pancakes. The width of these pancakes is about 
50 ps. 

• Inside surfaces must be highly reflective at grazing incidence.

e-

3w.hep.caltech.edu/calor02/abstract/ Presentation/cerenkov/atramenov.ppt
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Cerenkov Tile/FiberCerenkov Tile/Fiber

Quartz 
Plate

“pmt”

Absorber 
plate

Quartz 
fiber

Ti:Sapphire
fiber with 
cladding Ti:Sapphire is a 

wavelength shifter 
and rad-hard. Index 
of refraction = 1.7

Issues:  light yield, 
purity of plate, 
speed of shifter.
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GeigerGeiger--mode silicon pmt (SPMT)mode silicon pmt (SPMT)

100 – 10000 SPMTs tied
in parallel to same 
substrate.

High gain, 106, low 
noise

Issues are rad-hardness 
and rate ability

http://www.slac.stanford.edu/pubs/icfa/fall01/paper3/paper3.pdf

40 µm

pe’s
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New New ScintillatorsScintillators and Shiftersand Shifters
A 10 year long search for new organic 
scintillators that are rad-hard. (bulk damage 
to scintillator base � longer wavelengths. 

Waveshifter chemicals that are rad-hard, 
fast.

Inorganic wavelength shifters for cerenkov
tile calorimeters.
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Tracking and Energy FlowTracking and Energy Flow

Use tracking to improve jet response
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Jet Jet ResRes improvement using tracking. CMS improvement using tracking. CMS 
4T B field4T B field
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Jet improvement by using tracking infoJet improvement by using tracking info

Tracking from CMS, ECAL 5% stochastic, 1% 
constant, and HCAL 50% stochastic and 3% constant.
Note that a jet has <zmax> ~ 0.22. For charged particles 
< 100 GeV (jets < 0.5 TeV) use tracks to measure E.
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E(GeV)

dE
/E

Tracking
ECAL
HCAL

For present energy 
scales at the LHC use 
tracker energy 
measurement if 
possible. At a VLHC 
this will not help. 
(Without substantial 
improvements in 
tracking)

“Energy Flow”
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Energy Flow Jet ImprovementEnergy Flow Jet Improvement
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CDF Study CDF Study –– Photon+JetPhoton+Jet
CDF studied energy flow in photon + J events 
using shower  max (par ticle id) and tracking 
information. A similar  ~ 24% improvement 
was seen.
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Improved Dijet MassImproved Dijet Mass
There is a ~ 22 % 
improvement in the dijet 
mass resolution. Implies 
that calorimeter resolution 
is not the whole story.
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New CalorimeterNew Calorimeter

Issues for designing new calorimeter for 
VLHC/Eloisatron
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Transverse Size Transverse Size -- HCALHCAL
Shower size

limits
the number of
resolvable 
“ par ticles”  in a
jet, especially the
dense “ core”  of 
a jet. L imits set
to “ energy flow”
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Hadron Cascades and Energy FlowHadron Cascades and Energy Flow

Layer #
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Large Fluctuations in longitudinal development of hadron showers set limits 
on utility of depth segmentation. � fine longitudinal depth segmentation 
only samples intrinsic fluctuations in shower development

SDC Hanging File Calorimeter Data. 96 layers of scintillator, each 
read out with separate pmt.
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Intr insic L imitations to ContainmentIntr insic L imitations to Containment

Jet “ splitting” , g -> QQ and Q -> qlv, puts 
intr insic limit on required depth. Jets 
themselves “ leak” .
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Jets “ leak”  
too – 0.1 % 
will lose > 
½ of the 
energy due 
to splitting.
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Calorimeter Depth RequirementsCalorimeter Depth Requirements

CCFR Data 

200 GeV π

Relative Resolution vs depth

Eleak/Eν as a function of depth.  
Hatched area is where neutrinos 
dominate

10 TeV jets

Conclusion � no gain for 
calorimeters thicker than 
~ 10-12 λ
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Effects of Final State RadiationEffects of Final State Radiation

No detector simulation Full detector simulation

Z’s at the LHC in “CMS” detector
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LHC LHC –– CMS Study of FSRCMS Study of FSR
MJJ/Mo plots for
dijets in CMS with and
without FSR. The 
dominant effect of FSR
is clear .
The d(M/Mo)/(M/Mo)
rms r ises from 
~ 11% to ~ 19%, the 
distr ibution shifts to
smaller  M/Mo,  and a
radiative low mass tail 
becomes evident.

dM/M

M/Mo
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Hadron ColliderHadron Collider-- Dijet Dijet dMdM/M/M
A series of Monte Carlo studies were done in order to 
identify the elements contributing to the mass error. 
Events are low PT, Z -> JJ. dM/M ~ 13% without FSR.

Z -> JJ , Mass Resolution 

dE (Calor)

Fragmentation

Underlying Event

Radiation

B = 4 T

FSR is the 
biggest effect. 
The 
underlying 
event is the 
second largest 
error (if cone 
R ~ 0.7). 
Calorimeter 
resolution is a 
minor effect.
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Effects of Pileup Events Effects of Pileup Events 
Pileup, R=0.5, |y|=3Pileup, R=0.5, |y|=3120 GeV Z’

1033

1034

Forward tag 
jets, ET~ 40 
GeV

1035

1034
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PilePile--up Missing Etup Missing Et
Study done for  CMS. Three major  sources of detector  induced  missing ET
– incomplete angular  coverage, B field “ sweeping”  to small angles and 
calor imetr ic energy resolution. 

Clear ly need radiation hard calor imetry to go to smaller  angles – as C.M. 
energy increases par ticular ly. Presently dose < 1 Grad at |ηηηη| = 5.
At SLHC, pileup events create a background of ~ 5GeV *  sqr t(62) = 40 
GeV ET-miss / crossing. Fatal for  W’s, no problem for  SUSY.

Event Missing Et - 6.7 GeV Total

max y

B field

dE calor

<ET-miss>/minbias
event vs eta coverage

Contributions to ET-miss for 
minbias events



J. Freeman   Erice  Oct 3, 2003 53

Intrinsic LimitationsIntrinsic Limitations
Transverse size set by shower extent, 
either Xo or λλλλ -> limit to tower size.
Longitudinal depth set by containment to 
~ 10 λλλλ. Limit on depth set by jet leakage.
Speed needs to be fast enough to identify 
bunch crossing (25 ns/LHC ; 12.5 
ns/SLHC; 18 ns VLHC)

Jet resolution limited by FSR at LHC, 
not calorimeter energy resolution.
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New Calorimeter DesignNew Calorimeter Design

Speed is very important (12.5ns bunch spacing)
Radiation resistance critical
Any new calorimeter will be designed with 
Energy Flow in mind. To take good advantage of 
Energy Flow, ~5X5 cm HCAL tower size
Limited longitudinal segmentation
10-12 λ thick
Energy resolution not too important.
Can see two variants: 

ATLAS-like liquid ionization 
CMS-like optical 

If you are building a new calorimeter for SLHC/VLHCIf you are building a new calorimeter for SLHC/VLHC
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SummarySummary
ATLAS and CMS Hadron calorimeters will need upgrade for 
SLHC
New algorithms (Energy Flow) improve jet resolution. Ultimate 
limits of method include finite shower sizes. Unfortunately utility 
decreases for increasing jet energies.
Final State radiation remains major limitation to di-jet mass 
resolution. Address this with improved analysis methods?
Studies of higher mass states will require higher luminosity which 
will put in premium on radiation resistance.
Colliders with increased luminosity and energy will require 
detector development:

Cerenkov calorimeters
Replacement fluids for LAr in forward regions
Advanced photodetectors
Improved materials (scintillators or quartz fiber)
Possible new directions (gas-cerenkov calorimeter)


