

Hadron Calorimetry For Future Hadron Colliders

Jim Freeman

Fermilab

J. Freeman Erice Oct 3, 2003

1

SLHC Detector Environment

	LHC	SLHC
\sqrt{s} L $\int L dt$	$ \begin{array}{c} 14 \text{ TeV} \\ 10^{34} / (cm^2 \cdot \sec) \\ 100 fb^{-1} / yr \end{array} $	14 TeV $10^{35}/(cm^2 \cdot sec)$ 1000 fb^{-1}/yr
Bunch spacing dt	25 ns	12.5 ns
N. interactions/x-ing	~ 20	~ 100
$dN_{ch}/d\eta$ per x-ing	~ 100	~ 500
Tracker occupancy Pile-up noise Dose central region	1 1 1	5 ~2.2 10

Bunch spacing reduced 2x. Interactions/crossing increased 5 x. Pileup noise increased by 2.2x if crossings are time resolvable.

VLHC/ Eloisatron Detector Environment

	LHC	VLHC
\sqrt{s} L $\int L dt$	$ \begin{array}{c} 14 \text{ TeV} \\ 10^{34} / (cm^2 \cdot \sec) \\ 100 fb^{-1} / yr \end{array} $	$\frac{100 \text{ TeV}}{10^{34} / (cm^2 \cdot \text{sec})}$ $\frac{100 \text{ fb}^{-1} / \text{ yr}}{100 \text{ fb}^{-1} / \text{ yr}}$
Bunch spacing dt	25 ns	19 ns
N. interactions/x-ing	~ 20	~ 25**
$dN_{ch}/d\eta$ per x-ing	~ 100	~ 250**
Tracker occupancy Pile-up noise Dose central region	1 1 1	2.5** 2.5** 5**

** 130 mB inelastic cross section, <N_{ch}> ~ 10, <Et> = 1GeV

ATLAS Calorimeter

ATLAS LAR Ha	dron EndCap
	HEC
Number of modules	128
Pseudorapidity-coverage	$1.5 < \eta < 3.2$
Total thickness	$\geq 10 \lambda$
Longitudinal samplings	$4 (4)^{\dagger}$
Transverse granularity $\Delta \eta \times \Delta q$	$\rho = 0.1 \times 0.1 \ (0.2 \times 0.2)^{\dagger}$
Number of channels	~ 5600

 † — values in brackets for $|\eta|>2.5$

36 modules of +/endcaps, central wheel

LHCB HCAL

two separate movable halves:

- stack of 26 modules in each half
- 5.6 λ instrumented depth
- $4.2(w) \times 0.26(h) \times 1.66(l) m$
- module weight 9.5 ton
- read-out electronics on detector

CMS HCALs

J. Fleeman Ence Oct 5, 2005

CMS HB Calorimeter

Sampling calorimeter:brass (passive) & scintillator (active)Coverage: $|\eta| < 1.3$ Depth: $5.8 \lambda_{int}$ (at $\eta=0$) π resolution:~ 120 %/ \sqrt{E} Completed & assembled 0.087×0.087 17 layers longitudinally,

 $\phi x \eta = 4 x 16 towers$

J. Fleeman Ence Oct 5, 2005

20°

Completed, assembled, HE-1 installed

Common Technology for HB, HE, HO

HF detector

Iron calorimeter Covers $5 > \eta > 3$ Total of 1728 towers, i.e. 2×432 towers for EM and HAD $\eta \times \phi$ segmentation (0.175 \times 0.175)

To cope with high radiation levels (>1 Grad accumulated in 10 years) the active part is Quartz fibers: the energy measured through the Cerenkov light generated by shower particles.

- Radiation Damage
- Rate Effects
- Bunch ID determination

Scintillator under irradiation forms Color centers which reduce the Collected light output (transmission loss).

LY ~ exp[-D/Do], Do ~ 4 Mrad

Current operational limit ~ 5 Mrad

Radiation damage to scintillators

Barrel doses are not a problem. For the endcaps a technology change may be needed for 2 < |y| < 3 for the CMS HCAL.

Liquid Ar Ionization

Second and the second second	Critical density	ATLAS 1034	ATLAS 1035
Barrel EM, η=0	$5 imes10^{6}$	$0.5 imes10^5$	$5 imes 10^5$
Barrel EM, η =1.3	$4 imes 10^6$	$1.2 imes 10^5$	1.2×10^{6}
End-cap EM η =1.4	$3 imes 10^6$	$1.3 imes 10^5$	$1.3 imes 10^6$
End-cap EM η=3.2	$5 imes 10^6$	$2.5 imes 10^6$	$25 imes 10^6$
FCAL η=3.2	$1500 imes 10^{6}$	$2.5 imes 10^6$	$25 imes10^6$
FCAL η=4.5	÷	$130 imes 10^{16}$	$1300 imes 10^6$

At SLHC, ATLAS LAR will stop working at $\eta \sim 1.5$ Switch to liquid Xe, ?

100 GeV electrons. 25ns bins. Each histo is average pulse shape, phased +1ns to LHC clock

Calculated event time (vertical scale) vs actual event time. CMS HE, 100GeV pions. Also works for lAr. DO timing resolution 4ns/E (in GeV). Watch pile-up though. The faster the calorimeter, the less important pile-up will be.

CMS HE Calorimeter

J. Freeman Erice Oct 3, 2003

Atlas lAr EM Calorimeter

Not so different, after shaping. Bunch ID should be no problem²⁸

ATLAS/CMS at SLHC

- Both detectors will have problems in the endcap region.
- ⇔ ATLAS → rate problems. Replace lAr for $\eta > 1.5$?
- CMS → radiation damage problems in endcap. New scintillators? Or new technology?
- $\bullet \rightarrow$ New R&D

Profitable R&D Directions?

- ◆ Cerenkov calorimeters are rad-hard and fast → good candidates for future colliders
 - Quartz fiber or plate
 - Gas cerenkov
- New photon detectors \rightarrow low cost, small, rad-hard
 - Red-sensitive HPDs
 - Geiger-mode photodiodes
- New scintillator materials \rightarrow rad-hard
- New directions:
 - "Spacal" with liquid scintillator capillaries coupled to quartz fiber light guides?

Gas Cerenkov operation

The Cherenkov light is generated by shower particles that cross gas gaps between absorber elements.

- Shower particles co-move with the Cherenkov light as two overlapped pancakes. The width of these pancakes is about 50 ps.
- Inside surfaces must be highly reflective at grazing incidence.

3w.hep.caltech.edu/calor02/abstract/ Presentation/cerenkov/atramenov.ppt

Cerenkov Tile/Fiber

1.0 Emission Absorption **Relative Intensity** 500 600 700 800 900 1000 Wavelength (Nanometers) Figure 1 Ti:Sapphire is a wavelength shifter and rad-hard. Index of refraction = 1.7

Ti:Sapphire Absorption/Emission Spectra

Issues: light yield, purity of plate, speed of shifter.

J. Freeman Erice Oct 3, 2003 http://www.slac.stanford.edu/pubs/icfa/fall01/paper3/paper3.pdf 35

New Scintillators and Shifters

- A 10 year long search for new organic scintillators that are rad-hard. (bulk damage to scintillator base → longer wavelengths.
- Waveshifter chemicals that are rad-hard, fast.
- Inorganic wavelength shifters for cerenkov tile calorimeters.

Use tracking to improve jet response

Jet Res improvement using tracking. CMS 4T B field

barrel jet of E_T =100 GeV

Radius of ECAL front ~ 1.3 meters

Charged particles $P_T < 0.8 GeV$ \rightarrow Looper in barrel.

Fraction of energy escape from a jet cone (R=0.5) in 4T field.

"Energy Flow"

Tracking from CMS, ECAL 5% stochastic, 1% constant, and HCAL 50% stochastic and 3% constant.

Jet improvement by using tracking info

Note that a jet has <z_{max}> ~ 0.22. For charged particles < 100 GeV (jets < 0.5 TeV) use tracks to measure E.</p>

For present energy scales at the LHC use tracker energy measurement if possible. At a VLHC this will not help. (Without substantial improvements in tracking)

Resolution

20GeV 24% → 14% 100GeV 12% → 8%

E_T Scale

< 2% in 20-20GeV

0: no correction (calorimeter only) 1: calo response - simple average 2: calo response - library 3: full correction (library of response, track-cluster match, out-of-cone tracks) 4 out-of-cone tracks correction only

CDF studied energy flow in photon + J events using shower max (particle id) and tracking information. A similar ~ 24% improvement was seen.

There is a ~ 22 % improvement in the dijet mass resolution. Implies that calorimeter resolution is not the whole story.

Energy Flow

Nr charged tracks generated/matched vs jet E_T . At $E_T \sim 50$, almost all tracks matched

Issues for designing new calorimeter for VLHC/Eloisatron

Transverse Size - HCAL

Radius [cm]

Hadron Cascades and Energy Flow

Large Fluctuations in longitudinal development of hadron showers set limits on utility of depth segmentation. \rightarrow fine longitudinal depth segmentation only samples intrinsic fluctuations in shower development

SDC Hanging File Calorimeter Data. 96 layers of scintillator, each read out with separate pmt.

Intrinsic Limitations to Containment

Jet "splitting", g -> QQ and Q -> qlv, puts intrinsic limit on required depth. Jets themselves "leak".

Calorimeter Depth Requirements

Conclusion \rightarrow no gain for calorimeters thicker than $\sim 10-12 \lambda$

 E_{leak}/E_{v} as a function of depth. Hatched area is where neutrinos dominate

Z's at the LHC in "CMS" detector

- M_{JJ}/Mo plots for dijets in CMS with and without FSR. The dominant effect of FSR is clear.
- The d(M/Mo)/(M/Mo) rms rises from

 11% to ~ 19%, the
 distribution shifts to
 smaller M/Mo, and a
 radiative low mass tail
 becomes evident.

M/Mo

Hadron Collider- Dijet dM/M

 A series of Monte Carlo studies were done in order to identify the elements contributing to the mass error. Events are low P_T, Z -> JJ. dM/M ~ 13% without FSR.

120 GeV Z'

J. Freeman Erice Oct 3, 2003

Pile-up Missing Et

- Study done for CMS. Three major sources of detector induced missing E_T

 incomplete angular coverage, B field "sweeping" to small angles and
 calorimetric energy resolution.
- Clearly need radiation hard calorimetry to go to smaller angles as C.M. energy increases particularly. Presently dose < 1 Grad at |η| = 5.
- At SLHC, pileup events create a background of ~ 5GeV * sqrt(62) = 40 GeV E_T-miss / crossing. Fatal for W's, no problem for SUSY.

J. Freeman Erice Oct 3, 2003

Intrinsic Limitations

- Transverse size set by shower extent,
 either Xo or λ -> limit to tower size.
- Longitudinal depth set by containment to
 ~ 10 λ. Limit on depth set by jet leakage.
- Speed needs to be fast enough to identify bunch crossing (25 ns/LHC ; 12.5 ns/SLHC; 18 ns VLHC)
- Jet resolution limited by FSR at LHC, not calorimeter energy resolution.

New Calorimeter Design

If you are building a new calorimeter for SLHC/VLHC

- Speed is very important (12.5ns bunch spacing)
- Radiation resistance critical
- Any new calorimeter will be designed with Energy Flow in mind. To take good advantage of Energy Flow, ~5X5 cm HCAL tower size
- Limited longitudinal segmentation
- 10-12 λ thick
- Energy resolution not too important.
- Can see two variants:
 - ATLAS-like liquid ionization
 - CMS-like optical

Summary

- ATLAS and CMS Hadron calorimeters will need upgrade for SLHC
- New algorithms (Energy Flow) improve jet resolution. Ultimate limits of method include finite shower sizes. Unfortunately utility decreases for increasing jet energies.
- Final State radiation remains major limitation to di-jet mass resolution. Address this with improved analysis methods?
- Studies of higher mass states will require higher luminosity which will put in premium on radiation resistance.
- Colliders with increased luminosity and energy will require detector development:
 - Cerenkov calorimeters
 - Replacement fluids for LAr in forward regions
 - Advanced photodetectors
 - Improved materials (scintillators or quartz fiber)
 - Possible new directions (gas-cerenkov calorimeter)