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| ntroduction

Optimized trackers at 103 reguire significant changes
from present designs.

Motivate by physics requirements.

103> targets new physics at high p;. B physics
programis at low luminosity.

1 year @: 10°* =100 fb1, 10> = 1000 fb!

Constrain designs by performance requirements,
operating environment, and technical specs at 10°°.

Perspective isfor precision solid state detectors
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Historical Note

» First silicon tracker for a hadron collider was proposed ~1985 by the INFN Pisa
group for CDF a Fermilab the “ SV X”

— 4 layers of silicon microstrips, 2-7 cm radii
— 50K channels
— Expected luminosity was 102° (100 nb1), (dose ~few KRad)
— Primary purpose was to discover top by (real) W—tb
— Not expected to do any significant B physics
e M any were skeptical about this application
“it will flood the rest of the detector with secondaries” (UAL experlence)
— “it will be impossible to maintain required mechanical precision”
— “it will be inefficient”
— “it will burn up dueto radiation”

— “it will beunreliable or never work at all”
— “anyway thereisno physicsto do withiit...”
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LHC Basdline 1034, 300 fb

o Generally accepted outcome of the basdline program
— B physics program (at low luminosity) complete
— Precision Standard Modd program (W, t studies) complete
— QCD: inclusive jet production up to E;=3.6 TeV
— The SM Higgs boson is found if it exists
— SUSY, if a the EW scale, isfound

— Limitson (or discovery of) various exotica
* New gauge bosons
» Heavy quarks
o Compositeness
e ExtraDimensions
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Physics Goalsfor SLHC @ 10

Expectations are based upon the ATLAS & CM S studies for LHC upgrade

— Physicsin ATLAS at apossible upgraded LHC, Azuelos et a, ATL-COM-
PHY S-2000-030 (March 8, 2001)

— Physics Potential and Experimental Challenges of the LHC Luminosity
Upgrade, hep-ph/0204087

— 3000 fbi, 14 TeV
QCD studies, compositeness
Strongly coupled WW system

Searches
— Extradimensions
— New gauge bosons
— Excited quarks

Triple gauge boson couplings
Rare top decays

Higgs physics
Supersymmetry
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QCD Studies Compositeness

* Relies on measurement of jets
— dN/dE;
— C0sO

» Extend E; reach from 3.6t04.2 TeV
e Extend compositeness scale from 40 to 60 TeV

e Cdaorimetric measurement, no direct use of
tracking

e Calibration of calorimeters at SLHC using
tracks?
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Strongly Coupled WW System

e Incaseof nolight (<1 TeV) Higgs the WW
scattering becomes strong.

 Study production of W+W- pairs, leptonic
decays.

« Background regjection uses jet tag and veto
— Significantly degraded by jet pile-up effects at 10%°

« Tracking of muons and electrons are required
for any increase in significance at high
luminosity
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Searches

 New gauge bosons
— ExampleisZ’' = yp, ee
— SLHC extends reach by ~ 30% if u,e are included

— Key challenge is electron ID to included ee
channel in search

e Excited quarks
— Measure effects of excited quark decay

* g* = qg.qy
— Measurement is primarily calorimetric
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Extra Dimensions

 Dynamics from shift of gravity to TeV scale
e Signal is production of jetsor y with E-™sS

 Measurement constrains o (# extradim) and
My, the scale of gravity.

e SLHC increases reach~30% (9-12 Tev @ 0=2)
 Measurement is primarily calorimetric
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 Triple gauge boson couplings
— Probe the WWY and WWZ vertex
— SM expectations are modified by new physics.
— Increased luminosity offers statistics and therefore
Increased sensitivity
— Final statesarelvy and llv
— Ability to track and identify electronsis a mgor statistics
driver.
« Raretop decays

— Certain FCNC decays are too small inthe SM to be seen
even with an SLHC

— |f detected could be a probe of new physics

— Requires full machinery of b tagging and top
reconstruction. Use of second top as atag leading to b jets,
for example.
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Higgs Physics

 SM Higgswill be found at the LHC (if there)

e Special topicsfor an SLHC
— Rate limited decays
— Increased precision on couplings
— Higgs pair production
— Self couplings
* Higgs program relies on fully functional
detector with tracking, lepton ID, b tagging
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Supersymmetry

e Particle content (MSSM)
— SpinY.
* 4 neutralinos
» 4 chargeinos
* Higgs sector h,H,A,H+,-
e Gluinos
— Spin0
» sguarks, sleptons
 Rparity
— Preserves B,L conservation
— R=(-1) 3B-L)+2s
— SUSY particles are produced in pairs
— Lightest supersymmetric particle (LSP) is stable

« Additional “hidden” sector to provide SUSY breaking
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Supergravity Models (SUGRA)

o Sqguarks and gluinos are heavy but strongly
coupled, dominate cross section. LSPisy,’,
weakly interacting, classic E;™ss signature.

e LSPisproduced in association with lepton pairs or
SM Higgs which decaysto bb. ¥ - ¥°h, h - bb

* Require lepton identification and b tagging with
precision vertex tracking.
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Gauge Mediated Models (GM SB)

e GluinoisLSP. Phenomenology dominated by NLSP and
whether it decays in or outside the detector.

* 4 main scenarios depending upon various parameters
1. /?10 = é y gluino in association with photon or photon plus |epton
pairs, ct=1.2
2. . longlived, if decaysinvolumey does not point.
3. NLSPisstau, ct=52 um, want to track inside jets
4. NLSPisstau, ct=1 km, 2 “stable” particles per event which look
like p with B<1
* Requires lepton identification, lepton/y discrimination,
track multiplicity and p; inside jets, TOF
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R Parity Violation

o E;Msggnatureis|ost.
« Unstable y; decays
— qqQ
— I*lv
— qal,qqv
* Requireslepton ID, b anti-tag
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SUSY at 10

If SUSY isrelevant (hierarchy problem) expect some part of
the spectrum seen at the baseline LHC.

There can be a heavier part (squarks and gluinos) only
accessible at 10%. Mass reach extendsfrom 2.5to0 3 TeV.
Basic measurement is mostly calorimetric.

But “the background to SUSY isSUSY”.

Particular exclusive decay chains require full tracking
capabilities.

Thedecay 0. — X590, Xs» — Xoh, h - bb isan
example from the SUGRA mediated scenario.

Requires b tagging and reconstruction
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Conclusions on Physics Shopping List

« Some of the proposed topics are calorimetric
— Will calorimeter systematics depend upon tracking
capability?
» Tracking will be of particular importance for
— Strong WW system
— Search for new gauge bosons
— Top physics
— Higgs physics
— Supersymmetry
o Largest impact ison the Higgs and SUSY sectors.
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Technical Background

e Basic constraints on tracking systems
— Geometry
— Materidl
— Point resolution

 Point resolution and multi-hit response
— The problem of 2D

« Silicon detectors
— Principle, structures
— Radiation issues
— Signal processing issues
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Traectory

 Charged particleina
magnetic field B=Bz
o 3D Hdix : 5 parameters
C = hdlf curvature

(1(sgn)/R)
Z, = offset
d = signed impact
parameter (distance of
closest approach)
Azimuth @ = angle of track
X = X0+ Rcos at closest approach
=y0+ RsinA — A
z=ZO+R/1tanH e_dlpangle
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Momentum resolution
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Vertex Resolution

X1, X2 = measuremert planes
yl , y2 = measured points, with errors oy

@:Q 1+8_X
2 AX

x1 X2
for good resolution on angles (¢ and 6) and intercepts (d, z, )
* Precision track point measurements
» Maximize separation between planes for good resolution on intercepts
* Minimize extrapolation - first point close to interaction
e Material inside 1% layer should be at minimum radius (multiple scattering)
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Point Resolution

* Discrete sensing € ements
(binary response, hit or no X
hit), on a pitch p, measuring

a coordinate x

* Discrete sensing e ements
(analog response with signal
to noiseratio S/N) on a
pitch p, wheref isafactor

depending on pitch,

threshold, cluster width

Sept. 30, 2003
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Multi-hit performance

e Binary response (hit or no hit), on pitch p, two hit separation
requires an empty e ement.
— Wide pitch = most hits are single element, separation = 2p
— Narrow pitch = double element hits, separation = 3p
e Analog response: can use local minimain amerged cluster

e The problem of 2 dimensions:

— crossed array of n elements each on pitch p gives equal resolution on
both coordinates.
e m hits = n? combinations with n?—m false combinations

— Small angle stereo geometry, angle a

« False combinations are limited to the overlap region but resolution on
second coordinate isworse by 1/sin(a)
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2D

o Pixel structure: n x mchannels
— Ultimate in readout structure
— Expensive in material, system issues, technology

» Pixelsand strips can also be thought of as 2 extremes
of a continuum (super-pixels, short-strips,.....)

— Some potential for optimizations of performance vs.
complexity but needs to be analyzed on a case by case basis

* Nove 2D structures with 1D readout which rely on
assumptions about hit characteristics
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Silicon Detectors

e Semiconductor band structure = energy gap
 Asymmetric diode junction: example p(+) into contact with n

(Na>>Nd)
» Space charge region formed by diffusion of free charges,

can be increased with "reverse bias’

junction width :W = /220e(Vy, +Vgg ) = 0.51m p(Vy, +Veg )
U = electronmobility, & =11.9¢,

p = resistivity of ntypematerial = =1-10kQ cm
etiN,,
Vg, = builtinpotential (~0.8V) V., =appliedreversebias
<+“—» W
"~
V=0 p+
Sept. 30, 2003 Innovative Detectors for
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Levels near the mid-gap can generate aleakage or dark current

e en; (OVinerma N1 )WA

2
n, =intrinsic carrier concentration
o = recombination crosssection
Vinerma = Carrier thermal velocity
N, =trap density
A = junction area

which depends upon temperature and trap density (defects)

» Noise: statistical fluctuationsin |, are anoise factor

* |ssue of thermal run-away: power dissipated in silicon =V gl
» Power dissipation heats the silicon, increases |
» Thermal conduction paths are critical
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Position Sensitive Structure

Charge sensitive

. . . . eamp + '
Single sided configuration Bunp-bonded To Preamp + shaping,
pixel readout S T signal processing,

e pipelines, digitization
g % ////:///
XDE‘A|§\DE‘A‘\DE‘AL‘,\
T ]
N-type Si
|
= Positive
Bias
Diagram courtesy of Z.Li and V.Radeka
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Radiation Effects

e |Onization

— Incident particle interacts with atomic electrons
— e/h pairs created, then recombine

— Transient effect
» Actual signal formation
» Single event upset condition in circuits

» Chargetrapping at Si/SIO2 interface (largely controlled by rad-hard
circuit designs or thinner oxides)

 |ncident particle interacts with atom
— Displacement damage — permanent or slow to reverse
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Radiation Effects

« Damage to the periodic lattice creates mid-gap states
—>increased |eakage current (noise, thermal run-away)

Al =aVd
Amp

cm

Damage constant a =2-3x107"

Volume V =2x10cm’
Incident Flux & =10" —10" particles/cm* @ LHC
= Al = 20A@0°C  (current doublesevery 7 degrees)

* Reduction in charge collection efficiency (CCE)
— Ratio of collection and charge trapping time constants
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Charge collection

Fluence @ w @ 600V J T, Q estimated Q measured
[cmrd [um] [k €] [k €]
2(1014 300 3/10 19.4 82%

86 % Casse et d
8104 300 3/2.5 13.0 65%
58% Casse et d
1016 140 1.4/0.2 1.3 =full ssimulations
6% Also V. Eremin
1016 50 at 100V 0.5/0.2 7.4 3-D detectors
33%

Sept. 30, 2003
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Creation of new acceptor states or removal of donor states

—  Effective change of resistivity
—  Semiconductor type inversion: n becomes p

—  Depletion voltage changes in proportion to absolute value of number
of effective acceptors = higher voltage operation required

Viq Versus proton fluence measured by
C-Von BNL 1.2 - 3kQcm wafers
——BNL #921: HTLT O Diffused + TD
350 - BNL #923: Standard
300 — BNL #903: HTLT O Diffused -
2 2 \ B = 0.0109
32250 \\ o
T S B=00047 |
€ £ 200
£ S 150 4 T~ P=0 7
S —
<3 AN
= ” 100 & /’// no SCSI (TCT)
50 =
0 ‘ ‘ ‘ | | V.Radeka
0.E+00 1.E+14 2E+14 3.E+14 4.E+14 5.E+14 6.E+14 Z. Li
Proton fluence (p/cm? BN.L
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Signal Processing |ssues

Signal: expressed as input charge,
typically 25,000 pairs (4 fC)
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-
pulse Tm

coupling capacitance, but R; C; >>T,,
—  Before(after) radiation damage ~ 1
nA(1ma)
—  AC component is seen by pre-amp
Noise fluctuations ~ Gaussian o
—  Leakage Current
- greamp “i npurt] noise charge”, white noise,
ecreases with pre-amp current, increases
with faster risetime where a,b are UN a+ bCD
constants and C, is the detector
capacitance

Vhias

On D\/ILEAKTM

—  Biasresistor: source of thermal noise 1
. Noise fluctuations non-Gaussian due to ) N D
coherent or position dependant pickup. R
System issue — grounding and shielding. BIAS

— Can sometimes be controlled with local or
off-line pedestal subtractions event by
event.
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Silicon Collider Detectors

1% generation: LEP and CDF vertexers, L=10%°
— 2-4layers, single sided DC coupled silicon or early double sided, ~50K channels
— Chargeintegration + S/H, analog readout, 3 um radsoft CMOS and NM OS
— Rad soft components (~25 KRad)
2nd generation: LEP and CDF, L=10% (~100 KRad)
— AC coupled detectors, improved double sided structures
— Rad hard components, 1.8 um radhard CMOS
— Early pixel implementations
3'd generation: CDF2a, DO, and B factories, L=10%! (few M Rads, 1012-10'3/cm?)
— Early examples of trackers
— Complex double sided constructions, ~500K channels
— On chip storage pipelines, ADC's, digital readout, 0.8 um radhard CMOS
4t generation: ATLAS, CMStrackers, CDF2b , L=103%34 (~10 MRads, 10'4-10%%/cm?)
— Large scale systems (5-10M channels), uniform designs, mass construction methods
— Return to single sided detectors (radiation hardness and HV operation: SSC/LHC R&D)
— New IC processes (Maxim, DMILL, 0.25 pm), fast front ends, deep pipelines
— Engineered, large pixel systems for vertexing
5t generation: New trackers for L=10% (~100 MRad, 104-1016/cm?)
— Very large scale systems, simplifications
— New rad hard sensor structures and materials
— Lower mass supports and services
— Increased azimuthal AND longitudinal segmentation, pixel structures move to larger radii
—  Further evolution of 1C (0.13,0.09 um, heterostructures...) technology
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Parameters LHC, SLHC

LHC SLHC
Vs 14 TeV 14 TeV
L 1034 10%
Bunch spacing At 25ns 12.5ns
0, (inelastic) ~80mb ~80mb
N. interactions/x-ing | ~20 ~ 100
(N=L o, At)
dN/dn per x-ing ~ 150 ~ 750
<E;>charge particles| ~450MeV| ~450 MeV
Track density 1 10
Pile-up noisein cal 1 ~3
Dose central region 1 10

Sept. 30, 2003
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| | ww RS emppe_ The ATLAS
Ty = S Inner tracker
HINI\NNH“N“H\INIH““I“NNNININ““I“H\H H\Hm\\.
01 02 03 04 05 06 07 08 0.9 1 . 1.5
. ////////////// -
z||z||z ||I| b=
— st strip detdotork W 3 A =
SRR RIR ) |: ppp ==
= ——= 11 ILILF—""" Double
== | -1 Sipixels de detectors - Single .
The layout of the cmsﬁinﬁtéik:f S
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Modularity (ATLAS example)

R Readout hybnd
AR stereo

g
# e Yoy
“ Y Y

1l

il
Tl
g |

Sensors
768 strips on
80 um pitch

" ] 9

12 cm
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|D Selected Performance
Specifications®

 Coverage
— Angular coverage |n|< 2.5
— Number of precision hits> 5
— Number of straw hits = 36 (effective 1 point resolution of 70 um at ~75 cm)
* Resolution
— p;o(1/p;) < 0.3 at p;=500 and [n|< 2, <0.5 n|=2.5
— Impact parameter o, as good as possible
— Polar angle o(6)<2mrad
— Longitudinal intercept a(z)<1lmm
» Reconstruction efficiencies
— Isolated tracks p; > 5, > 95%, fake rate < 1%
— all tracks p; > 1in AR < 0.25 around high p; isolated track > 90%, <10% fakes
— Electrons p;>7,> 90%
« B tag efficiency >40%, non-b rejection of > 50
*ATLASview
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| ntercepts

g

A With B-layer
A Without B-layer
In| <0.25

L . E
A WithB-l -

= B A W=th0ut g)i?erlyer = 300 |
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\ 200 |
100 A

0 [ 100 |-
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1 10 10° 1 10
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Specifications modified for 10%°

Coverage
— Angular coverage |n|< 2.5
— Number of precision hits> 9(?) to provide same p; resolution and efficiencies
— Number of straw hits = 36 (effective 1 point resolution of 70 pum at ~75 cm)
Resolution
— p;o(1/p;) < 0.3 at p;=500 and [n|< 2, <0.5 n|=2.5
— Impact parameter o, as good as possible
— Polar angle o(6)<2mrad
— Longitudinal intercept 0(z)<0.5mm
Reconstruction efficiencies
— Isolated tracks p; > 5, > 95%, fake rate < 1%
— all tracks p; > 1in AR < 0.25 around high p; isolated track > 90%, <10% fakes
— Electrons p;>7,> 90%
B tag efficiency >40%, non-b rejection of > 50
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Occupancy vsn and radius 103
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SCT Merged clustersvsn and radius
1034
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Technical Specifications

* Theretained or modified performance specs at 10% drive a new
set of technical specsfor the tracker.
— Occupancy: As shown, for 103, occupancies and cluster merging are less

severe (x2) in pile up eventsthan in B jets from Higgs decay. At 10% the
Situation reverses by ~x5

* Require greater segmentation, more modularity, faster electronics

— Longitudinal resolution: would like to resolve vertex for all ~200
(effective) pile up events

« Segmentation may aready be sufficient

— Secondary particles and interactions: rates scale with [luminosity
« Material reduction challenge.

— Survival: radiation levelsincrease x10
« Radiation resistance of sensors, electronics, and materials
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Material 1n basaline tracker

« Silicon aloneis0.3% X,

e 4 doublelayers 2.4% B
 Atlasmoduleis 1.2% 57
® | F
 Present 4 SCT layersat & ©
nN=0 are ~10% L E
— 7.6% is support, cooling, L E
and services. o
— Challengeisto reduce |
this further. 0 05 1 15 2 25 3 35
— Overdesign? n
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Elements of an SLHC Tracker

o 3regions, fluences
< 20 cm: inner region 10%° /cm?
20 <r <50 cm: intermediate region 104-10% /cm?
> 50 cm: outer region 1012-10%3 /cm?

e Segmentation
e Mass
 Radiation
o Scale— construction
~60 m? =»~200 m?, 4K modules =+~20K modules
o Serviceable
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Outer Region

Presently occupied by strawsfor ATLAS and single
sided silicon for CMS.

Need increased longitudinal segmentation to reduce
occupancy and enable pattern recognition.

Resolution on z, and cot&aready provided by
Intermediate and inner layers if not degraded further.

Radiation hardness required similar to present silicon
layersie: HV operation already achieved.

Example (A.Seiden) isto split current 6 cm sensors
Into 3 cm units (o, = 9mm).
Major challengeis scale and logistics (~140 m?).
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Outer tracking modularity

< 6cm >

6cm
or
larger

Legend
E  3cm strips 80um pitch 64 Channel ASIC
] BiasingResistors [0  By-passcaps resistors etc
B  Bonding Pads B  rrea, LED
M Hybid B Mounting, Power, Optical Fibre,
Cooling
Sept. 30, 2003 Innovative Detectors for
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Intermediate Region

* Presently occupied by silicon strip trackers
with length ~6 cm and small angle stereo.

* Increased segmentation in gand/or z required.
e Pixel structures (super-pixels, short strips)

 Enhanced radiation hardness

— Thinned silicon (150 pum) (material reduction!)
— Engineered materials (ROSE, RD50...)
— Front end chips
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Inner Region

Presently occupied by pixel layers and innermost silicon
layers.

Unprecedented radiation levels.

|ncrease segmentation of pixels
— Enabled by evolution of IC process 0.25—+0.13 um

Decrease material — improve cooling, increase shared services

Sensors

— Further thinning
— New structures
— Engineered or alternate (nin p) materials
— Cryogenic silicon
— Non-silicon (diamond, SIC...)
Expect to just replace it once/year?
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Beyond SLHC

o Further steps are energy and/or luminosity increases.

 Energy
— To preserve momentum resolution increase granularity in
@ B fidld, radius
e Luminosity
— Increase granularity in ¢ and z to handle occupancy
— Technologies move again to larger radius
— Need yet another approach for R <20 cm....
— Electronics to deal with ~DC beam

Sept. 30, 2003 Innovative Detectors for
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New Technical Directions

 |nsupport of tracking systems which operate at very
high luminosity a number of new technical directions
should be explored.
— Rad hard devices and electronics
— Lower mass materials, supports, services
— Segmentation
— Large area coverage
— Data readout, transmission, and processing (triggers)
o Basisfor anew set of R&D Initiatives. Not to early
to start.

* Support for stable engineering infrastructure.
Microelectronics as an example.
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Radiation Hardness

 Rad hard silicon materials — Rose, RD50, ...

» Cryogenic detectors

* Non-silicon materials — Diamond

o Operational scenarios— partial depletion, thin..
* Properties of degp sub-micron |C processes

e Circuit designs and architectures

e Active pixel sensors

* New configurations (3D...)
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Radiation Hard/Tolerant Si Detectorsfor HEP Experiments

New detector structuresfor moreradiation tolerance

From 3d detectors
L ateral depletion only

Non-planar, difficult technology
(Etch or drill of holesin wafer needed)

Depletion

-

Sherwood |. Parker et al., UH
511-959-00

(slide courtesy of V.Radeka)

Sept. 30, 2003
Carl Haber L.B.N.L.

Novel semi-3d detectors

Depletion laterally and from both sides

Planar technology
Reduction of full depletion voltage by a

factor of 4 without losing active volume

Cheap, |OW\|:egS[|\\/|lty To pre-Amps, 0 V
CZ materialswith natural
High [O] --- more rad-hard — —

!
'

Li et al, 9" Vienna Conf.

. on Instrumentation, Vienna, Austria, 19-
& Meth. A478 (2002) 303-310.

i
Al

Negative
ias

-23 February (2001)

Brookhaven group

Z.Li
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Supercolliders — Erice, Italy

54



Segmentation

o Silicon strip sensor designs and geometries
e Pixel geometries

o Pixel-Strip transition

o Z readout methods

 Front end readout electronicsin evolving processes
— 0.25,0.13... mm
— SIGe
e |nterconnections
— bump bonding methods at finer pitch (r < 20 cm
— Pixel readout of superpixel geometry
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Interleaved Stripixel Detector (I1SD)

-illustration of the concept (BNL Group Z.L1)

Y-strip
readouts

n
Al

The gaps between pixels
are enlarged for clearer
illustration

Sept. 30, 2003
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Line

connecting

Y -pixels
(1% Al)

FWHM for charge
diffusion
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\ Y -cdll

(1% Al)
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Lower Mass

« Large areaand precision low mass mechanics

» Alignment technology (lasers, sensors)
— Drop stiffness requirements in favor of active monitoring and feedback
(lesson from the telescope builders).
e Low mass éelectrical and mechanical components including
discretes & substrates

— Power distribution schemes, current mode power with local regulation,
less redundancy, grounding issues

— Technologies for hybrid circuits — thick, thin films, laminates

* Cooling technology — materials, coolants, delivery systems
— Simplified coolant distribution
— Heat pipe schemes
— Cooling integrated with FE electronics
— Reduced power consumption
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Example of reduced mass structure for silicon detectors

Includes cooling, services and most of support

Embedded €l ectrical
Bus cable

3
Peek Cooling \
channels Foam Core

Silicon Sensors

4mm separation

M aterial/stave: Fraction of _Total RL:
1.8% RL » Hybrids 13%
* 124 grams  Sensors 39%
e Bus Cable 17%

» CF/Coolant 29%
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Large Area Coverage

* Robotic assembly and test methods

e Large areaand precision low mass mechanics
* Project organization

* Reliability and redundancy methods
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Example of robotics & large scale organizational success. CMS
assembly with identical systems at 7 sites to produce ~20K modules

Cyr
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Data readout, transmission, and
processing

Optical datatransmission
Wireless data transmission
Pattern recognition and data reduction methods

Large area and fine line lithographic methods
— Cablesto link sensors to remote front end chips

— Power cables

— Signa distribution networks

Fast track trigger processors
— Vertex triggers (CDF SVT)
— Momentum measurement
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Conclusions

» Physics casefor precision tracking at SLHC

e Want to maintain LHC performance specs

o Key issues
— Occupancy
— Materidl
— Radiation

o SLHC tracker isall solid state and contains 3 distinct
tracking regions

o Comprehensive program of technical development is
required and should start now
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Conclusions

e |ssues for concern

“it will flood the rest of the detector with secondaries’
“it will be iImpossible to maintain required mechanical
precision”

“it will be inefficient”

“it will burn up due to radiation”

“it will be unreliable or never work at all”

“anyway there is no physicsto do with it...”

o Past experience has shown this not to be the case
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