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The Big Picture: ELN explores the first 100 fs

ELN LHC

History of the universeHistory of the universe
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ELN = A program for 50 years of 
forefront high energy physics

� A large advance beyond LHC
– Multi-step scenarios are the most realistic
– Eventually 50 to >100 TeV per beam

� No extraordinary technical difficulties preclude ELN at 1035

cm-2 s-1 with present technologies
– Radiation damage to detectors is a serious issue
– Proton synchrotrons could reach  up to 1 PeV c.m. energy

� Discovery potential of ELN far surpasses that of lepton 
colliders
– Much higher energy plus high luminosity
– The only sure way to the next energy scale
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Three strategies for VLHC / ELN design

� Low field, superferric magnets
– Large tunnel & very large stored beam energy

– Minimal influence of synchrotron radiation

� Medium field design 
– Uses ductile superconductor at 4 - 8 T (RHIC-like)

– Some luminosity enhancement from radiation damping

� High field magnets with brittle superconductor  (>10 T)
– Maximizes effects of synchrotron radiation

Does synchrotron radiation raise or lower the collider $/TeV?
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VLHC Instability Workshop (Mar . ‘01) 
found no showstoppers

� Transverse mode coupling instability
– Safety factor N thr / N b : LF ~ 0.5, HF  ~ 8

� Resistive wall multi- bunch instability 
– Increments: LF ~ 1 turn, HF ~ 5 turns

� Incoherent and coherent tune shifts
– ∆Q LF = - 0.3, ∆QHF = - 0.02

� Not expected to be serious:
– Electron cloud instability 

• LF – 0.25 s, HF – 0.5( ( 10? ) s

– Longitudinal microwave instability:  safety factor  20
– Coherent synchrotron tune-shift: safety factor  10
– Ground motion & ∆B/B effects suppressed by feedback

� http: / / www. slac. stanford. edu/ ~ achao/ VLHCWorkshop. html
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Dominant beam physics is synchrotron radiation

� Radiation alters beam distribution & allowed tune shift at 
acceptable backgrounds

� Radiation damping of emittance

increases luminosity
– Maybe eases injection

– Maybe loosen tolerances

==> Saves money ???

� Energy losses limit Ibeam

– 1 - Heating walls ==> cryogenic heat load ==> wall resistivity

– 2 - Indirect heating via two stream effects

– 3 - Photo-desorption ––> beam-gas scattering ––> quench

==> Costs money
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� Direct thermal effects of synchrotron radiation: 

� 2-stream effects can multiply thermal loads - requires study

Thermal loads  constrain current in 
high field designs
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Vacuum/cryo systems: 
Scaling LHC is not an option

� Beam screen (requires aperture)
1. Physical absorption

a) shield & absorber are required

b) regeneration @ 20 K tri-monthly

2. Chemical absorption
a) finite life

b) regeneration at 450 - 600 K annually 

3. “Let my photons go”

a) Not-so-cold fingers

b) Warm bore / ante-chambers

� Cryogenics
– sensible heat v. latent heat systems

– LHC tunnel cryogenics have more than 1 valve per magnet average

– Superfuild systems are impractical at this scale
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Synchrotron
Radiation mask
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Synchrotron masks and novel materials may 
enhance performance

BUT, masks work best in sparse lattices & with ante-chambers
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2-in-1 transmission line magnet lets photons 
escape in a warm vacuum system

* Width 20 cm.  

* 2-in-1 Warm-Iron "Double-C” Magnet 
has small cold mass.  

* B @ conductor ~ 1 T;  NbTi has high Jc  
==>  low superconductor usage.  

* Extruded Al warm-bore beam pipes with 
antechambers.  

* 75 kA SC transmission line excites 
magnet; low heat-leak structure.  

Simple cryogenic system.

Current return is in He supply line. 

Radiation power is low, 
but number of  photons is large
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Beam distribution may change ∆ν∆ν∆ν∆νmax
consistent with acceptable backgrounds

Beam dynamics of marginally damped collider needs experimental study
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Controlling

collider costs
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SSC experience shows us VLHC cost drivers

2nd order reductions:
Eliminate HEB, 

Main Quads

Lowering dipole cost is 
the key to cost control
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Magnet development to control dipole costs

VLHC

D20

Cosine coil
Complex, Expensive

VLHC
Prototype

Conductor
material

geometry

Structures
stress control

processing

Coils
geometry
insulators

Magnets

Accelerator physics
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Next Generation
HEP Collider

D20 RD1

RD2

RD3

ITER

2000
A/mm2

3000
A/mm2

$1.5/kA-m

RD4

B = 13.5 T 
@ 1.8K

LBNL example of magnet development

B = 14.7 T 
@ 4.5 K

VLHC
Prototype
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Complementary high-field magnet programs 
at BNL & FNAL

Apparatus used at BNL for testing HTS coils
in a common- coil configuration

Coils for a mechanical model of a cosine θ magnet
at FNAL. The Nb3 Sn cable is insulated in ceramic 
cloth (left).
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Better materials + simpler coil geometry 
can reduce magnet cost

The National Conductor Program is already producing 
superior A15 conductor in industrial quantities @ lower $/kg

Common Coil
Magnets
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Radiation & Beam Abort:
Worst- Case Accident

� 2. 8 GJ ~ 8 x LHC Energy (can liquify 400 liters of SS)

If sweeper fails, the beam 
travels straight ahead into 
a sacrificial graphite rod 
which takes the damage & 
must be replaced. 
Beam window also fails.

Normally extracted beam beam is swept 
in a spiral to spread the energy across
graphite dump
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The next tunnel may be the last: 
Cost management through phased scenarios 

C (k m) M a g net type B-d
(T )

fill
fa cto r

pp E (cm)
T eV

e e
E ( c m )
G e V

L
(1 034)S in g le T u n n el scen a ri os

120 Transmiss io n Line 2.00 0.860 20 1
120 co s theta 11.20 0.780 100 1

228 Transmiss io n Line 2.00 0.910 40 1
228 RHIC type 5.75 0.800 100 1
228 high field 12.00 0.765 200 1

FNAL’s VLH�C study has elaborated one such scenario
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VLHC Study

www.vlhc.org

Study Leader - Peter Limon
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Charge to FNAL VLHC Study

� Determine characteristics of  post-LHC proton collider 
– Initial operation Ecm > 30 TeV & L > 10 34 cm -2 s -1

– Option for Ecm > 150 TeV collider in the same tunnel

� Identify major challenges:
– technology & construction

– important accelerator physics issues, 

– unusual operational, ES&H requirements

� Estimate present construction costs of major cost drivers
– Assume Fermilab is the injector

� Identify areas of significant R&D to establish the technical 
basis for the facility.
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Staged approach to VLHC

� Each stage promises new & exciting particle physics
– Build a BIG tunnel, the biggest reasonable for the site

– E = 40 TeV ==> C = 233 km for superferric design

� First stage assists in realizing the next stage
– Choose large diameter tunnel

� Each stage is a reasonable-cost step across energy frontier
– Use FNAL as injector & infrastructure base

S 1

S2

FNAL
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R&D is needed to reduce technical risk & cost, 
and to improve performance (Stage 1)

� Tunneling is the most expensive single part
� Automation to reduce labor component and make it safer

� Beam instabilities & feedback: the largest risk factor
� A combination of calculation, simulation & experiments

� Magnet field quality at injection and collision energy
� This does not appear to be an issue, but needs more study

� Magnet production & handling; long magnets reduce cost
� Reduce cost of steel yokes and assembly time & labor

� Installation requires complicated, interleaved procedure 
� Handling long magnets is tricky

� Vacuum & cryogenics: surprisingly expensive
� Develop getters that work for methane, or cryopumps

� Possible cryogenic instabilities due to long lines
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LHC

Upgrades
See web site: http://cern.ch/lhc-proj-IR-upgrade
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Committee considered 10 key questions

� Minimum acceptable number of future experiments
– ATLAS, CMS & ALICE can improve physics reach with detector upgrades

� Maximum events / crossing that detectors can swallow
– At present ATLAS, CMS  could accept L ~ 3 – 5 x 1034 cm-2 s-1

– Repositioning quadrupoles closer than 23 m probably requires redesign of 
calorimeters, muon detectors, shielding

� Maximum crossing angle & minimum acceptable beam 
separation at parasitic collision points
– Depends on beam brilliance x number of parasitic collisions

– Requires larger crossing angle

� Maximum aperture and gradient of future IR quads
– A maximum gradient of ~350 T/m in ~55 mm aperture is possible
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Key questions for  upgrade (cont’d)

� Maximum field (energy) swing of LHC dipoles
– Dipoles with 15 T and 2 T margin may be achievable

– Present record dipole field is 14.7 T @ 4.2 K

– Challenge is keeping cost/T-m same as present LHC dioles

– Ideal energy swing is 3 x 

� Magnet quench limit for  higher  LHC energy
– Depends on magnet safety margin

� Maximum beam intensity on dumps at 7 TeV &  14 TeV
– Increasing Ib from  0.56 A to 0.85 A okay with present dumps.  Within 

present tunnels current could be raised to 2 A 

– Increasing energy to 14 GeV raises  temperature by ~ 3 x
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Prepare for extending the energy frontier with LHC 
accelerator & detector luminosity upgrades now!

Install upgrade here

CERN task force considered several scenarios: 

a) alternate IR-upgrades, injector chain upgrades, increase Ibeam, superbunches 

b) An energy doubler
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A 10x luminosity upgrade requires upgrading 
several accelerator and detector systems

• Interaction regions
=> smaller ß*, larger crossing angle, fewer parasitic collisions.
=> shorter bunches or crab cavities or superbunches

• Instrumentation, diagnostics, feedback systems
=> understand & deal with instabilities limiting beam current

• For detectors trackers must be rebuilt, mons systems, 
calorimeters, triggers, DAQ need redevelopment

=> 8 - 10 year program…. Start now
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IR layouts for luminosity upgrade

??
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Interaction Region Upgrades
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Radiation damage of IR magnets is a major 
issue for luminosity upgrade
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Problem is even more severe for 
dipole-first IR.
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Magnet R&D for a Luminosity Upgrade

• Magnet R&D will be the largest part of the US LARP 

• Quads with largest possible aperture with Gop > 200 T/m for any new IR
• Large-aperture dipoles for extreme radiation environment of a dipole-first IR
• Vigorous program to develop Nb3Sn magnet technology is required

• Goal: magnet design(s) ready for production on the time scale 
of luminosity upgrade

• This work is a stepping stone to the magnets required for the 
next, higher energy hadron collider.
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Energy Upgrade  for LHC?

� We epect science requires a higher energy hadron collider 
beyond LHC

• A higher energy machine in the same tunnel is one option.

• Virtue of an “energy doubled”  LHC: Uses CERN infrastructure.

� Concerns:
– It will be expensive and require a long shutdown.

– Nb3Sn fundamental properties limit energy step to only < x1.8 

– Requires multi-year shutdown
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If we can afford a linear collider, we can afford ELN

Summary comments
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