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The Big Picture: ELN exploresthe first 100 fs
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History of the universe
ELN  LHC RHIC
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ELN = A program for 50 years of
- forefront high energy physics

gs A large advance beyond LHC
— Multi-step scenarios are the most realistic
— Eventually 50 to >100 TeV per beam

55 No extraordinary technical difficulties preclude ELN at 10%°
cm 2 st with present technologies
— Radiation damage to detectorsis a serious issue
— Proton synchrotrons could reach up to 1 PeV c.m. energy

s Discovery potential of ELN far surpasses that of |epton
colliders
— Much higher energy plus high luminosity
— The only sure way to the next energy scale
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Three strategiesfor VLHC / ELN design
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os Low field, superferric magnets
— Largetunnel & very large stored beam energy
— Minimal influence of synchrotron radiation

55 Medium field design
— Uses ductile superconductor at 4 - 8 T (RHIC-like)
— Some luminosity enhancement from radiation damping

gs High field magnets with brittle superconductor (>10T)
— Maximizes effects of synchrotron radiation

Does synchrotron radiation raise or lower the collider $/TeV?
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VLHC Instability Workshop (Mar. ‘01)
wmmeve - TOUNA NO ShOwstoppers

gs Transverse mode coupling instability
— Safety factor N, /N, : LF~0.5 HF ~8

gs Resistive wall multi- bunch instability
— Increments: LF ~ 1 turn, HF ~ 5 turns

gs Incoherent and coherent tune shifts
— AQ =-0.3,AQ,=-0.02
g5 Not expected to be serious:
— Electron cloud instability
« LF-0.25s HF—0.5((10?)s
— Longitudinal microwave instability: safety factor 20
— Coherent synchrotron tune-shift: safety factor 10

— Ground motion & AB/B effects suppressed by feedback
gs http: / / www. dlac. stanford. edu/ ~ achao/ VLHCWorkshop. html
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Dominant beam physics is synchrotron radiation
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s Radiation alters beam distribution & allowed tune shift at
acceptable backgrounds

— Irstamanecds kinincdily
Alparase [Lnminosity

gs Radiation damping of emittance §
increases luminosity £
— Maybe eases injection
— Maybe loosen tolerances
==> Saves money ?77?

10

ss Energy losseslimit I, ' o
— 1 - Heating walls ==> cryogenic heat load ==> wall resistivity
— 2 - Indirect heating viatwo stream effects
— 3 - Photo-desorption —> beam-gas scattering —> quench
==> Costs money
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Thermal loads constrain current In
high field designs

s Direct thermal effects of synchrotron radiation:
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gs 2-stream effects can multiply thermal loads - requires study
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Vacuum/cryo systems:
wnnevs - SCaliNg LHC isnot an option

¢s Beam screen (requires aperture)
1. Physical absorption

a) shield & absorber are required
b) regeneration @ 20 K tri-monthly

2. Chemical absorption
a) finitelife
b) regeneration at 450 - 600 K annually

3. “Let my photons go”
a) Not-so-cold fingers
b) Warm bore / ante-chambers

gs Cryogenics
— sensible heat v. latent heat systems
— LHC tunnel cryogenics have more than 1 valve per magnet average
— Superfuild systems are impractical at this scale
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Synchrotron masks and novel materials may
—nee - €NNANcCe performance

Synchrotron

Radiation

Deposited
W/m

Cooling channel
@ 50 °K /’“""

Synchrotron
Copper plating Radiation mask

WAB-91 Stainless steel casing ' 19h T¢ superconductor

BUT, maskswork best in sparse lattices & with ante-chambers
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2-In-1 transmission line magnet |lets photons
wmnev e - €SCAPE IN @ Warm vacuum system

Radiation power islow,
but number of photonsislarge

* Width 20 cm.

* 2-in-1 Warm-Iron "Double-C” Magnet
has small cold mass.

* B @ conductor ~1 T; NDbTi hashigh Jc
==> |ow superconductor usage.

* Extruded Al warm-bore beam pipes with
antechambers.

* 75 kA SC transmission line excites
magnet; low heat-leak structure.

Current return isin He supply line.

Simple cryogenic system.
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Beam distribution may changeAv,...
—mevs - CONSIStent with acceptable backgrounds

008 Beamebeam limit versus damping decrement (10/13/00)
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Beam dynamics of marginally damped collider needs experimental study
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Controlling

collider costs
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SSC experience showsusVLHC cost drivers
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Accelerator cost distribution

Facilities
23.3% Main
collider
57%

Accelerator
and

Contingency 44 Experiments

Lowering dipole cost is

the key to cost control . W e
2nd order reductions: 82%
Eliminate HEB,
Main Quads
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Magnet development to control dipole costs
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7 2= Cosine coll
W e ss\N| Complex, Expensive

Calils

geometry
Insulators

Structures

stress control
processing

Conductor

material
geometry

VLHC
Prototype

Accelerator physics
field & aperture VLHC
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L BNL example of magnet development
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A/mm?
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3000
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/

$1.5/kKA-m

Next Generation
HEP Collider
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Complementary high-field magnet programs
wnmee - Al BNL & FNAL

NuJ

Coils for a mechanical model of a cosine 6 magnet
at FNAL. The Nb; Sn cableisinsulated in ceramic
cloth (left).
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Apparatus used at BNL for testing HTS coils
in acommon- coil configuration




Better materials + ssmpler coil geometry
scrwmiey as can reduce magnet cost

Conductor vs operating field
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The National Conductor Programis already producing
superior A15 conductor inindustrial quantities @ lower $/kg
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Radiation & Beam Abort:
wemme s Worst- Case Accident

|

s 2. 8 GJ~ 8 x LHC Energy (can liquify 400 liters of SS)

Normally extracted beam beam is swept
in aspiral to spread the energy across
graphite dump

Aluminum, Steel, & Cement Sarcaphagus —.

Spiral Sweep on Graphite Absorber Block —.

| S\Neeper fa |S, the beam Sacrificial Absorber (for Sweeper Failure) —
travels straight ahead into Beam Window —,
asacrificia graphlte rod X-Y Sweeper Magnet —. |
which takes the damage & ¥ iker
must be replaced.

Beam window also fails.

Lambertson —,_
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The next tunnel may be the last:
Cost management through phased scenarios

BERKELEY LA
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M agnet type

Single Tunnel scenarios
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FNAL's VLH[JC study has elaborated one such scenario
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VLHC Study

www.vlhc.org

Study Leader - Peter Limon
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Chargeto FNAL VLHC Study
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gs Determine characteristics of post-LHC proton collider
— Initial operationE_,>30TeV & L >103% cm 2 s-1
— Option for E_,,> 150 TeV collider in the same tunnel

s |dentify major challenges:
— technology & construction
— Important accelerator physics issues,
— unusual operational, ES& H requirements

gs Estimate present construction costs of major cost drivers
— Assume Fermilab is the injector

s |dentify areas of significant R&D to establish the technical
basis for the facility.
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Staged approach to VLHC
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gs Each stage promises new & exciting particle physics
— Build aBI G tunnel, the biggest reasonable for the site
— E=40TeV ==> C = 233 km for superferric design
s First stage assists in realizing the next stage
— Choose large diameter tunnel
gs Each stage is a reasonable-cost step across energy frontier
— Use FNAL asinjector & infrastructure base
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R& D isheeded to reduce technical risk & cost,
e - @Nd to IMprove performance (Stage 1)

gs Tunneling is the most expensive single part
71 Automation to reduce labor component and make it safer

gs Beam instabilities & feedback: the largest risk factor
721 A combination of calculation, simulation & experiments

s Magnet field quality at injection and collision energy
7 This does not appear to be an issue, but needs more study

s Magnet production & handling; long magnets reduce cost
71 Reduce cost of steel yokes and assembly time & |abor

s Installation requires complicated, interleaved procedure
72 Handling long magnets is tricky

gs Vacuum & cryogenics. surprisingly expensive
71 Develop getters that work for methane, or cryopumps
7/ Possible cryogenic instabilities due to long lines
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See web site: http://cern.ch/lhc-proj-1R-upgrade
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Committee considered 10 key questions
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s Minimum acceptable number of future experiments
— ATLAS, CMS & ALICE can improve physics reach with detector upgrades

s Maximum events/ crossing that detectors can swallow
— At present ATLAS, CMS could accept L ~3—-5x 103 cmr? st

— Repositioning quadrupoles closer than 23 m probably requires redesign of
calorimeters, muon detectors, shielding

s Maximum crossing angle & minimum acceptable beam
separation at parasitic collision points

— Depends on beam brilliance x number of parasitic collisions
— Requireslarger crossing angle

s Maximum aperture and gradient of future IR quads
— A maximum gradient of ~350 T/m in ~55 mm aperture is possible
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Key questions for upgrade (cont’d)

BERKELEY LA

s Maximum field (energy) swing of LHC dipoles
Dipoleswith 15 T and 2 T margin may be achievable
Present record dipolefieldis14.7T @ 4.2 K
Challenge is keeping cost/T-m same as present LHC dioles
|deal energy swingis 3 x

s Magnet quench limit for higher LHC energy
— Depends on magnet safety margin

s Maximum beam intensity on dumpsat 7 TeV & 14 TeV

— Increasing I, from 0.56 A to 0.85 A okay with present dumps. Within
present tunnels current could beraised to 2 A

— Increasing energy to 14 GeV raises temperature by ~ 3 x
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s 14 TeV 14 Te
L 10%4 104%
Bunch spacing At 25 ns 125 ™
» (inelastic) ~ 80 mb ~ 80 ml
. iInteractions/x-ing ~ 20 ~ 100
(N=L a_ At)
dN,, /dn per x-ing ~ 150 ~ 750
<Ey> charg. particles| ~ 450 Mel  ~ 450 MeV
Trecher occuponcy | 10
Pile-up noise in calo 1 ~3 I Normalised to LHC value




Preparefor extending the energy frontier with LHC
accelerator & detector luminosity upgrades now!
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[100 7]

-+ L at year end
-4 Integrated L
-8~ Poisson Error
» Time to Halve Error

ade here
P [10%em™s )
p [Arb. units)

2007 2009 2011 2013 2015 2017

CERN task force considered several scenarios:
a) alternate | R-upgrades, injector chain upgrades, increase |
b) An energy doubler

superbunches

beam?
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LHC Phase 1: Luminosity Upgrade

Possible steps to increase the LHC luminesity with hardware changes
only in the LHC insertions and/or in the injector complex include the .
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followimg Laussed e schein —

1. modify insertion quadrupoles and for layout — 57 w

. Increase crossing angle by \,@ —+ @ = 445 prad

increase Ny up to ultimate intensity — L — 3.3 x 10" em™ 57!
halve ¢, with hizh harmonic RF system — L = 4.6 x 10 em™ ™"

double mumber of bunches (and increase @.1) — L — 9.2x10%cm s '
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A 10x luminosity upgrade requires upgrading
—nee - SEVEral accelerator and detector systems

e Interaction regions
=> gmaller [3*, larger crossing angle, fewer parasitic collisions.
=> shorter bunches or crab cavities or superbunches

* Instrumentation, diagnostics, feedback systems
=> understand & deal with instabilities [imiting beam current

» For detectors trackers must be rebuilt, mons systems,
calorimeters, triggers, DAQ need redevel opment
=> 8 - 10 year program.... Start now
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|R layouts for luminosity upgrade
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Cluads 1st Dipoles 1st

//'

Quads between I'win Dipole 1st Twin Quads 1st
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| nteraction Region Upgrades
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wad Aperture

Peak field for G,

™
e

Chpode Aperture
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Radiation damage of IR magnetsisa major
e - 1SSUE fOr lUMinosity upgrade

dep INCreases both with L and with quad aperture.

- Emax = 4 mWig. (P/L)max = 120 Wim, Piripiet =1.6 KW
for L=10¥®cm?2s .

-~ Radiation lifetime for G11CR < 6 months at hottest spots

I Sen, et al . Beam Physics [ssues for a Possible 2™ Generanon LHC IR, EPAC 2002
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Problem is even mor e severe for
wnnens - dIpOle-first IR.

~ Emax ON Mid-plane ~ 50 mMW/g; Pgipole ~3.5 kW for L =10 cm#< s

— "Exotic’ magnet designs may be required, whose feasibility is not
known.

MoV, Mokhow, et al, Energy Dep Limuts n a Separabon Dipole in Front of the LHU High-L Inner Inplet, PAC 2001,
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Magnet R& D for a Luminosity Upgrade
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* Magnet R& D will be the largest part of the US LARP

* Quads with largest possible aperture with G, > 200 T/m for any new IR
o Large-aperture dipoles for extreme radiation environment of adipole-first IR
» Vigorous program to develop Nb,Sn magnet technology is required

» Goal: magnet design(s) ready for production on the time scale
of luminosity upgrade

e Thiswork is a stepping stone to the magnets required for the
next, higher energy hadron collider.
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Energy Upgrade for LHC?
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g5 We epect science requires a higher energy hadron collider
beyond LHC
A higher energy machine in the same tunnel is one option.
* Virtue of an “energy doubled” LHC: Uses CERN infrastructure.

gs Concerns:
— It will be expensive and reguire a long shutdown.
— Nb35Sn fundamental propertieslimit energy step to only < x1.8
— Requires multi-year shutdown
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Summary comments

If we can afford alinear collider, we can afford ELN
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