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- Magnets were, are, and will be used in most of the detectors for colliders

- Various magnetic field configurations have been used, producing dipolar, solenoidal
or toroidal field

- The size of the detector increases with the size of the collider, and so for the magnet, 
which is more often a superconducting one

- LHC detector magnets are a big step from LEP detector magnets

- Can the present technical limitations can be pushed further ?

INTRODUCTION
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1 - The various field geometries

INTRODUCTION
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- For a particule of charge q in a constant magnetic field B over a length L :

. Momentum p = mv = q ρρρρ B (ρρρρ = bending radius)

. Deflection over L ΦΦΦΦ = L / ρρρρ

. Sagitta s ∼∼∼∼ q BL2 / 8 p

- Three main magnetic configurations can be used :

. Dipoles

. Solenoids (thick or thin)

. Toroids

Why to use a magnetic field in a detector ?
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- Uniform field perpendicular to the beam axis

. Large split-coil iron-core magnets

. Saddle-shape magnets

- Maximum efficiency for particules emitted at
small angles

- Large interaction forces between coil and iron

DIPOLE FIELDS
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SADDLE SHAPED COILS
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SOLENOID FIELD

- Constant axial field⇒ helical
motion of the particules

- Very good momentum
resolution at large angle

- The most widely used
structure (compact, efficient)

- Thin solenoid concept
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TOROIDS

- Main advantages

. no field along the axis

. magnetic field always transversal to the particule momentum

. no (or low) fringing field outside the toroid

. an open mechanical structure

. the best momentum resolution at low angle

- But 

. very inhomogeneous magnetic field

. maximum field on the coil much higher than the useful field
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TOROIDAL FIELD

From ATLAS Barrel Toroid TDR
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ADVANTAGES/INCONVENIENTS OF EACH CONFIGURATION

- The three magnetic configurations will be used on LHC

. ALICE : conventional Al solenoid (L3) + conv. Al dipole

. ATLAS : thin SC solenoid + SC barrel toroid + SC end cap toroids

. CMS : SC thick solenoid

. LHC-b : conventional Al dipole

- There is clearly not a best solution

- All configurations have advantages and inconvenients

- Main design goals of the detector and performances of the other sub-detectors must

be taken into account when choosing the magnet configuration
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COMPARISON OF SPECTOMETER CONCEPTS

(from CEBAF Hall B CDR)

+++- -Open structure for neutron ToF

++-- -Polarized target operation

--++Simple trajectory reconstruction

++-++Maximum luminosity

+++++Particle identification

++

++

++

++

--

++

Momentum resolution

small θθθθ, high p

large θθθθ, low p 

++++++Momentum range

-- -+++ΦΦΦΦ-range

++++θθθθ-range

ToroidDipoleSolenoid
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2 - Past of thedetector magnets

. theprecursors of the70’s
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THE PRECURSORS OF THE 70’S

Inductive 
compling

Indirect 
cooling

1st SC solen. 
for  colliders

Hollow conductor

0.40.54-Rad. Thickness
(Xo)

117450Stored energy
(MJ)

3.43.51.153 (polediameter)Length (m)

2.01.51.41.5 (gap between coils)Warm diam. (m)

1.51.52.01.8Field (T)

SC thin solen.SC thin solen.SC thick solen.Split SC coil + iron coreType

LBL
(1980)

Saclay
(1979)

DESY
(1972)

CERN
(1970)

Designer  
(operation)

TPCCelloPlutoOmega
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OMEGA MAGNET
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CELLO MAGNET
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CONCEPT OF THIN SOLENOIDS

For minimizing the amount of matter in the coil and its cryostat :

. subtitution for low mass materials (Al instead of Cu and S.S)

. increase of Jc in the superconductor (no more adiabatic stability)

. indirect cooling by external pipes

. intrinsic protection (Al shunts, quench back tube) for quasi-uniform distribution of the
strored energy in case of quench
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2 - Past of thedetector magnets

. the matur ity per iod in the80’s (Tr istan, LEP, Teslatron)
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THE MATURITY PERIOD OF THE 80’S

Thewholedetector is
inside the magnet

On site assembly.

The largest SC magnet
(with DELPHI)

First inner
winding

-2.00.7Radiation thickness (Xo)

15013720Stored energy (MJ)

11.96.355Length (m)

11.952.7Warm diam. (m)

0.51.51.2Field (T)

Conv. Dip. (Al cond.)SC thin solenoidSC thin solenoidType

CERN (1987)Saclay (1987)KEK (1984)Designer  (operation)

L3ALEPHTOPAZ
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ALEPH SOLENOID

The coil alone (Saclay) The coil inside the detector (CERN)
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L3 MAGNET

L3 detector Construction phase
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THE MATURITY PERIOD OF THE 80’S

This is the« golden age» for  thedevelopments of thin solenoids (KEK/Tr istan, 
CERN/LHC, FNAL/Tevatron)

Main progress in the technology

. internal winding technique

. large aluminium stabilized conductor

. extensive use of Al for  the cryostat

For  conventional magnets, theL3 concept is to include thewholedetector inside the
magnet. I ts huge dimensions required special methods of construction, in par ticular on-
siteassembly.
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2 - Past of the detector magnets

. the SSC abortive projects
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- Although the SSC detector magnets were only built on paper, the solutions which
were foreseen are interested enough to be recalled

- Two detectors were proposed for the SSC 20 x 20 TeV pp collider

. SDC : thin central SC solenoid + outer conventional toroid

. GEM : huge SC solenoid, covering the whole detector

- A challenging proposal was also made for a 6 T compact (∅∅∅∅ 2 m x L 2.5 m) and
thin (1.8 radiation length) solenoid
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THE SDC DETECTOR

SC solenoid

Field 2T

∅∅∅∅ warm 3.4 m

Length 8.8 m

Stored energy 146 MJ

radiation thickness 1.2 Xo
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THE SDC PROTOTYPE COIL
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THE GEM DETECTOR

SC solenoid

Field 0.8 T

Warm ∅∅∅∅ 18 m

Length 31 m

Stored energy 3100 MJ

Cable in conduit

No yoke

On site fabrication
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2 - Past of the detector magnets

. the first toroid (CEBAF)
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I t isworth mentioning the first use of a toroidal detector magnet at CEBAF/CLAS in 1995

. 6-coil toroid

. Dimension of each coil

∼∼∼∼ 4.7 x 2.7 m

. Maximum useful field 2.0 T

. Peak field at conductor 3.5 T

. Stored energy 18 MJ

Courtesy A. Daël

CEBAF TOROID
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3 - The present situation for LHC
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THE LARGE HADRON COLLIDER (LHC)
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SC DETECTOR MAGNETS FOR LHC

- Several SC magnets with different structure

. ATLAS (thin solenoid + Barrel toroid + End-cap toroids)

. CMS (solenoid)

- Common points

. large international collaboration

. large involvement of the industrial firms

. size and requested performances never realized before

. similar technical choices (conductor, winding, cooling)

- And also some differences, mainly the strategy for assembly and tests

. ATLAS : partial tests in surface, assembly and final test in cavern

. CMS : assembly and test in surface before transfer to the cavern
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ATLAS DETECTOR
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ATLAS MAGNET

20200.76Current (kA)

4.13.92.6Peak field (T)

~ 1~ 12Central field (T)

2 x 0.251.080.04Stored energy (GJ)

--0.66Rad. thickness (Xo)

2 x 1603705.4Total cold mass (t)

2 x 881Number of coils

525.35.3Axial length (m)

10.720.12.63Outer diameter (m)

1.659.42.46Inner diameter (m)

--2.37Warm bore diam (m)

END-CAP TOROIDBARREL TOROIDCENTRAL SOLENOID
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ATLAS SOLENOID

Courtesy A. Yamamoto
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ATLAS BT TOROID
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ATLAS BT WINDING
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ATLAS BT DOUBLE PANCAKE
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BT COIL ASSEMBLY AT CERN (1)
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BT COIL ASSEMBLY AT CERN (2)
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SURFACE TEST OF THE ATLAS BO COIL

Each ATLAS BT coil will be separatly tested in the surface hall
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ATLAS CAVERN

The BT toroid assembly and the test of the BT + ECT coils together will be done in the cavern
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CMS DETECTOR
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CMS SOLENOID

Central field : 4 T

Nominal current : 20 kA

Stored energy : 2.7 GJ

Cold mass

Length : 12.5 m

Internal diameter : 6 m

Weight : 220 t
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CMS CONDUCTOR

Rectangular shaped cable 
contains 32 superconducting 

(Niobium-Titanium) strands

Rutherford type cable 
embedded in high purity 
aluminium profile for thermal 
and electrical stabilization

Conductor is mechanically 
reinforced by  two aluminium-
alloy sections in order to 
counteract the magnetic force 
where it is created

Current carrying capability: 
60 000 A @ 5 T, 4.2 KCourtesy B. Blau
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CMS WINDING

Courtesy P. Fabbricatore
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CMS CB-2 MODULE

Courtesy P. Fabbricatore
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ASSEMBLY PRINCIPLE
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SWIVELING PLATFORM TESTS AT CERN
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TRANSFERT TO  CAVERN

After the surface test, the magnet will be dissembled and transfered to the cavern
where will be re-assembled
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4 - The limitations for the future
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RELEVANT PARAMETERS (FOR SOLENOIDS)

- Basic parameters for  thespecification

. Field B, length L, radius R

. Eventually : field homogeneity, radiation thickness, interaction length

- Parameters relevant for  the physics

. BL2 (sagitta)

. BR2 (momentum resolution)

- Parameters relevant for  the magnet designer

. B2 R (mechanical forces)

. B2 R/∆∆∆∆R (protection in case of quench, ∆∆∆∆ R : coil thickness)

- Parameter relevant for  the ressource manager

. Cost : C = α (RL) 0.8 + ββββ (B2 R2 L)0.7

(from A. Hervé)
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LIMITATIONS (1)

- B : intrinsic value : Bc ~ 10 T for NbTi

~ 20 T for Nb3Sn

- R : . road transportation Rmax ~ 3.5 m

. Other mean of transportation (airlift ?)

the limitation is now the manufacture and handling

- L : no limitation, as long as a modular system is acceptable
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LIMITATIONS (2)

- Mechanical forces

. Forces must be held by the conductor and/or the external support structure

. the electrical insulation must also withstand the stress (shear stress in particular)

- Protection in case of quench

. importance of the value of the stored energy per unit of cold mass (E/M ratio)

. necessity of fast quench propagation after a quench has started
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DEVELOPMENTS UNDER WAY

- Conductor reinforcement

. homogeneous reinforcement of Al conductor : micro alloying + cold work              
(A.  Yamamoto)

. hybrid configuration (CMS conductor)

- Quench protection

. Increase operational E/M ratio by using passive (quench back tube, Al strips) and 
active (heaters) quench propagation systems
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E/M RATIO OF SOLENOIDAL DETECTOR MAGNETS

Courtesy A. Yamamoto
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MY PERSONAL FEELING

For detector solenoidal magnets, my personal feeling about the limits :

. limit of B2 R ~ 60 T2 m for the forces

. optimum of L/D between 1.5 and 2 (D coil diameter) for the dimensions

. limit of E/M ~ 15 kJ/kg for the protection (specially for thin solenoid) 
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CONCLUSIONS

- Big improvements, both in size and in performances, have been done since the Pluto
magnet construction

- The progress of the realization of the two LHC large SC magnets shows that most of
the challenges are now solved

- However, only the successful test of these magnets will justify the options which were
choosen, as will as their correct realization

- For the future, some progress in term of performances will probably be made, but 
clearly not with the same magnetitude as during the last thirty years


