

Hybrid Photon Detectors (HPD) & Multi Anode Photo Multiplier Tubes (MAPMT)

C. Joram, CERN EP

Direct collaborators in HPD development at CERN:

A. Braem, C. Chesi J. Séguinot, P. Weilhammer

Thanks for excellent (PPT) material to

Priscilla Cushman (Minnesota): HPDs for CMS HCAL readout Thierry Gys (CERN): Pixel HPD for LHCb RICH Franz Müheim (Glasgow): MAPMT for LHCb RICH Ray Mountain (Syracuse): BTEV RICH Roberto Pani (Rome), Flat Panel PMTs

Outline

- HPDs
 - Principle and limitations
 - Recent and ongoing developments in HEP
 - Development of a 10-inch HPD for astrophysics
 - Development of an HPD for medical imaging
- MAPMTs
 - Principle and limitations
 - The LHCb RICH with MAPMT readout
 - Flat Panel PMTs

Hybrid Photon Detectors (HPD)

Classical HPD designs

- Proximity focused
- 1:1 imaging
- Operates in axial magnetic fields.

- 'Fountain' focused
- Demagnification D
- No real focusing

 → ballistic point spread
- Intolerant to magnetic fields

- 'Cross' focused
- Demagnification D
- Focusing leads to small point spread
- Intolerant to magnetic fields

Drawbacks

- Rel. low gain (3000 8000) \rightarrow low noise electronics required \bullet
- Expressed sensitivity to magnetic fields

• Looking a bit closer: Back scattering of electrons from Si surface

back scattering probability at E \approx 20 keV: $\alpha_{Si} \sim 0.18 - 0.2$

~ 20% of the electrons deposit only a fraction $0{\le}\epsilon{<}1$ of their initial energy in the Si sensor .

Consequence 1: Photoelectron charge peaks show low energy shoulder down to Q = 0. \rightarrow p.e. detection efficiency < 1

noisa

$$\varepsilon_{det}^{p.e.} = 1 - \frac{n_{\sigma}^{noise}}{(S/N)} \cdot \alpha_{Si}$$

example: $n_{\sigma}^{noise} = 4$, $S/N = 10$, $\varepsilon_{det}^{p.e.} = 0.9$

C. Joram - HPDs and MAPMTs - Erice - 3 October 2003

Consequence 2

Measured spectrum with

For higher light levels, the back scattering effect leads to "combinatorial continuum" $_{MSi} \approx 0$ under the peaks.

C. Joram - HPDs and MAPMTs - Erice - 3 October 2003

Consequence 3: Back scattered electrons can hit another cell of the Si sensor \rightarrow cross talk

CMS HCAL HPD Gap: 3.3 mm $\rightarrow d_{max} = 6.6 \text{ mm} (B=0)$

Trajectories can become very complex in presence of magnetic fields.

C. D'Ambrosio, H. Leutz, CERN-EP/2002-072

Strong axial magnetic field solves problem completely.

P.B. Cushman and A.H. Heering "CMS HCAL Hybrid Photodiode Design and Quality Assurance Stations". ICFA IB, Vol. 25, 2002

• Looking a bit closer (2): Charge sharing between Si pixels

C. Joram - HPDs and MAPMTs - Erice - 3 October 2003

80

Phototube fabrication

comparison of process types (very schematic)

Internal - PMTs

external(transfer) - HPDs

HPD fabrication @ CERN

Facilities and infrastructure for the fabrication of large HPDs (up to 10"Ø) have been developed at CERN.

All ingredients for photodetector production are available:

- Design/simulation
- Photocathode processing (bialkali, Rb₂Te, Csl)
- Glass / ceramic tube manufacturing
- Indium sealing technique

Performance

NIM A 442 (2000) 128-135 NIM A 478 (2002) 400-403 www.cern.ch/ssd/Pad_HPD

4 Pad HPDs imaging Cherenkov ring from aerogel T. Bellunato et al., subm. to NIM A

C. Joram - HPDs and MAPMTs - Erice - 3 October 2003

Currently under development: 5-inch Pad HPD with Ceramic Envelope (Together with INFN Milano, C. Matteuzzi et al, and PHOTEK (UK))

Application: Characterization of aerogel as Cherenkov radiator.

Ceramic body, Indium sealed window

- \rightarrow better mechanical precision
- \rightarrow simplified electrostatics

Kovar skirt distorts E-field. Additional 'bleeder' electrode required .

Another HPD for HEP... Pixel HPD co-developed by CERN/LHCb and DEP (NL)

Special feature: fast (25 ns) pixel detector with 8192 channels (62.5 × 500 μ m²), organized in 1024 super-pixels of 500 × 500 μ m² size.

Imaging of LED spot

www.cern.ch/~gys/LHCb/PixelHPDs.htm

M. Campbell et al., LHCb note 2002-0048 RICH

August / September 2003 test beam. First operation at 40 MHz.

Online event display: PS T9 - air radiator - 10 GeV/c Double rings of e⁻ and π^- First performance estimates meet all specifications, except det. efficiency $\varepsilon_{det} \sim 0.87$ (prel.)

HPD Development for BTEV RICH

va_btev chip: PA + shaper + discriminator, 64 ch., $\tau_p = 75$ ns,

3 va_btev ASICs

Like LHCb prototype tube, but with a 163 pixel anode (hex close packed) and external electronics. Effective pixel size on cathode: 5.6 mm

Discriminator Threshold Scan (Single Channel)

- 15 tubes + readout sets available and successfully lab tested.
- Full RICH system test in beam at FNAL in spring 2004

HPD for the CMS HCAL Readout

(co-development CMS – DEP)

- Proximity focused optics.
- 27 mm active diameter
- S20 photocathode
- 19 or 73 hex pixels,
 5.4 or 2.68 mm flat-to-flat
- Very small acceleration gap (3.3 mm)
- Gain = 2500 (12 kV)
- External electronics

P.B. Cushman and A.H. Heering "CMS HCAL Hybrid Photodiode Design and Quality Assurance Stations". ICFA IB, Vol. 25, 2002

First 10" prototype tube with glass window and VA-prime electronics

C. Joram - HPDs and MAPMTs - Erice - 3 October 2003

HPDs for medical imaging: the HPD PET project

Bari, Rome, HUG Geneva, Univ. Geneva, CERN, and others

The PET parallax dilemma

New 3D axial concept

Axial arrangement of camera modules based on matrices of long crystals read out on both sides by HPDs

The HPD PET camera

Far goal: 3D Brain PET scanner with rectangular HPDs

- Energy resolution:
 - 7 7.5 % (FWHM)
- Spatial resolution (FWHM)
 (x,y) 1.5 2.2 mm
 - (z) 4.5 mm

Performance is constant over complete field of view !

Multi Anode Photo Multiplier Tubes

Principle

- Stacks of micro machined perforated metal sheets act as independent dynode channels.
- Independent anodes receive avalanches.

Issues

- Active area coverage
- Gain uniformity
- Cross talk
- Sensitivity to magnetic fields

Limitations

- Number of independent channels (~100)
- Pixel size (~mm)

Principle of metal channel dynodes

Example: Hamamatsu R7600-M64 64 cells of 2.3 mm

What is the real active area ?

There are gaps between cells !

LHCb results

Gain uniformity (limited by manufacturing precision of dynodes)

Variation of gain

- within a MaPMT ~ factor 3
- between 2 tubes < 2

Has to be coped with by

- RO electronics
- selection/grouping of tubes

Measurements in magnetic fields (up to 350 G)

- Loss of gain? \rightarrow No
- Distortion of pattern? → No
- Loss of photons? \rightarrow Yes

Loss of photons <10% for unshielded MaPMT:

- >20 G B longitudinal
- >200 G B transverse

Loss of photons <10% for single μ -metal shield:

- 0.9 mm thick, 13 mm extension
- >80 G B longitudinal

Active area is very crucial for RICH applications. $N_{pe} \propto A_{active}$

The LHCb solution

Use quartz lenses with one flat and one spherical surface

Demagnification (f -d)/f $\approx 2/3$

Method is limited to relatively small angles of incidence

- Without lenses: active area fraction: 38% (includes pixel gap)
- With lenses 85%
- effective pixel size 3.0 mm

LHCb test beam with 3x3 MaPMT array. APV25 readout (40 MHz)

With quartz lenses

Problem:

PMT signals (~100 fC) are very large compared to typical signals foreseen for chips like APV25, Beetle, etc. (5 fC).

Options:

- attenuator network
- special chip
- PMT with fewer dynode stages $(12 \rightarrow 8)$

Hamamatsu Flat Panels (Same technology as Multi Anode Photo Multiplier Tubes)

R8400-M64

Hamamatsu: $\epsilon_{A} = 49^{2}/52^{2} = 89\%$

More conservative: $\epsilon_{A} = (64 \times 5.6^{2})/52^{2} = 74\%$

(data by R. Pani)

Gain spread and cross talk like MaPMTs

 $27 \cdot 100$

(data by R. Pani)

7 phe

2 3

4 5

Gain spread of 2 different Flat Panels.

27.100									
53	78	80	77	78	91	10 0	50		
48	81	77	72	72	78	88	47		
47	94	82	67	62	69	79	43		
42	88	81	59	53	59	65	30		
45	91	77	60	54	57	65	29		
51	90	79	63	58	57	62	32		
49	89	72	63	58	60	62	40		

45.100									
80	77	69	65	64	63	58	45		
89	47	55	62	62	59	58	53		
96	79	70	64	59	57	58	54		
96	10 0	81	63	57	64	62	49		
92	98	79	61	56	58	63	51		
86	89	74	67	63	60	61	55		
82	81	72	64	57	56	60	58		
73	90	79	71	63	59	63	54		

15.100

47

41

41

41

30

-

-

51

-

0,2

1,8

0,2

Hamamatsu data Anode 37 Measured value

Cross talk of a Flat Panel.

-	-	-	-	-	-	-	-
1,8	0,2	-	-	<0, 1	<0, 8	<0, 1	-
10 0	2,7	-	-	<1, 4	100	<2, 4	-
2,6	0,3	-	-	<0, 1	<1, 8	<0, 1	-
-	-	-	-	-	-	-	-

27

44

Application in medical imaging (mammography): Readout of a CsI(TI) scintillator array with a Flat Panel

⁵⁷Co flood field irradiation (122 keV γ)

1 crystal produces signal on 5-14 channels.

Calculate centroid (incl. corrections for gain non-uniformity, distortions, etc.) and identify hit pixel.

Conclusions

- For many 'standard' applications, both HPDs and MAPMTs can do the job
- HPDs beat MAPMTs in signal definition, gain uniformity, flexibility
- The lower gain of HPDs is easily dealt with by state-of-the-art electronics
- Fabrication of HPDs with encapsulated electronics requires numerous advanced technologies (bump/wire bonding, electronics & sensor testing), which a single company does not possess. → 'Heavy' development + production.
- The market is dominated by just two companies: Hamamatsu (MAPMT) and DEP (HPD).
- \rightarrow Both MAPMTs and HPDs are relatively expensive!