Transition Radiation Detectors: recent developments and outlooks

Paolo Spinelli

Università di Bari and INFN Sezione di Bari

42<sup>nd</sup> INFN ELOISATRON Workshop: innovative detectors for super colliders

Erice, 28 September-4 October, 2003

# Summary

- > Transition Radiation process
- > Transition Radiation yield
- > Signal processing
- > Last generation TRDs for accelerators
- > TRDs to tag high energy hadron beams
- > R&D on novel TRDs

## > Conclusions



Number of X-rays/interface ~ 
$$\alpha Z^2 \omega_p \gamma$$

# TR from a single foil





# TR from a "multi-foil" radiator

 $N_{foil}$  = Number of foils ~100 up to ~ 1000



Interference effects: gap formation zone Saturation  $\gamma > \gamma_{sat}$ 

Number of X-rays ~  $\alpha$  Z<sup>2</sup> N<sub>foil</sub> ~ Z<sup>2</sup>

# Transition Radiator Detector (TRD)

X-ray detectors: MWPCs, Drift chambers, Straw tubes (Xe-CO<sub>2</sub>)



# TR energy yield





## Q-method vs N-method



P. Spinelli - 42nd Eloisatron INFN Workshop, Erice, 2003

# TRD performance vs length



one order of magnitude in Rejection Power is gained when the TRD length is increased by ~ 20 cm

# **TRD** applications

**<u>Particle ID</u>**: is based on the threshold properties of the TR

<u>Energy measurement</u>: if the mass is known, the energy can be evaluated only in the limited range between  $\gamma_{th}$  and  $\gamma_{sat}$ , and above  $\gamma_{sat}$  (below  $\gamma_{th}$ ) it is possible only to set a lower (higher) limit

<u>Charge measurement</u>: charge identification of high energy nuclei in particle astrophysics



# "TRDs for the 3rd millennium"

Workshop on advanced Transition Radiation Detectors for accelerator and space applications

#### International Advisory Committee

- C. Bonifazi (ASI) M. Calvetti (Firenze)
- M.L. Cherry (Louisiana)
- B. Dolgoshein (Moscow)
- C. Fabjan (CERN)
- D. Froidevaux (CERN)
- P. Jenni (CERN)
- K. Lübelsmeyer (Aachen)
- P. Nevski (BNL)
- E. O'Brien (BNL)
- A. Romaniouk (Moscow/CERN)
- A. Vacchi (Trieste)
- J. Wessels (Heidelberg)



#### Bari, Italy, September 20-23, 2001 Hotel Riva del Sole









C. Favuzzi G.L. Fogli N. Giglietto B. Marangelli A. Rainò P. Spinelli

#### **Conference** Secretariat

**Organizing Committee** 

M. Brigida P. Fusco F. Gargano F. Giordano F. Loparco M.N. Mazziotta S. Rainò

E-mail: trd2001@ba.infn.it Fax: +39.080.5442470 Web: http://www.ba.infn.it/~trd2001

# "TRDs for the 3<sup>rd</sup> millennium"

#### II Workshop on advanced Transition Radiation Detectors for accelerator and space applications

#### International Advisory Committee

M. L. Cherry (Louisiana)
B. Dolgoshein (Moscow)
C. Fabjan (CERN)
K. Lübelsmeyer (Aachen)
D. Muller (Chicago)
P. Nevski (BNL)
E. O'Brien (BNL)
A. Romaniouk (Moscow/CERN)
F. Sauli (CERN)
A. Vacchi (Trieste)
J. Va'vra (SLAC)
J. Wessels (Münster)



#### Bari, Italy, September 4-7, 2003 Hotel Riva del Sole

E-mail: trd2003@ba.infn.it Fax: +39 080 5442470 Web: http://www.ba.infn.it/~trd2003





#### **Organizing Committee**

C. Favuzzi G. Fogli P. Fusco N. Giglietto M. N. Mazziotta A. Rainò P. Spinelli

#### **Conference Secretariat**

M. Brigida F. Gargano F. Giordano F. Loparco S. Rainò

# Last generation TRDs for new accelerators

>ATLAS @ LHC:  $\varepsilon_{\pi} \sim 10^{-3} - 10^{-2}$  @  $\varepsilon_{e} \sim 90\%$ >ALICE @ LHC:  $\varepsilon_{\pi} \sim 10^{-3}$  @  $\varepsilon_{e} \sim 90\%$ >PHENIX @ RHIC:  $\varepsilon_{\pi} \sim 10^{-3}$  @  $\varepsilon_{e} \sim 90\%$ 



## Radiator prototype

#### TRT prototype for radiator and dE/dx studies



Goals: precise measurement of dE/dx and TR spectra; different radiators performance study; comparison with MC predictions.

(V.Tikhomirov. ATLAS TRT test beam results. 4 September 2003, Bari, Italy.)

## Sector prototype



- Sector of ATLAS TRT end cap
- 384 straws, 16 layers on beam direction
- 4 mm straw diameter
- Regular radiator: 15  $\mu$ m polyethylene foils with 200  $\mu$ m spacing
- 70% Xe + 20% CF<sub>4</sub> + 10% CO<sub>2</sub> gas mixture (70% Xe + 27% CO<sub>2</sub> + 3%O<sub>2</sub> since 2002)
- 2.5 ·10<sup>4</sup> nominal gas gain
- LHC type electronics

(V.Tikhomirov. ATLAS TRT test beam results. 4 September 2003, Bari, Italy.)

## ALICE TRD @ LHC



Carbon-polypropylene fibers/TEC (Xe-CO<sub>2</sub>) with pad read-out,  $e/\pi$  identification, tracking and triggering

 $\epsilon_{\pi} \sim 10^{-3} @ \epsilon_{e} \sim 90\%$ 

## ALICE TRD Chamber



P. Spinelli - 42nd Eloisatron INFN Workshop, Erice, 2003

#### ALICE TRD performance



#### PHENIX Time Expansion Chamber TRD

- 24 chambers arranged in 4, 6-chamber sectors, each 3.7m  $\times$  2.0m  $\times$  0.1m containing 2700 wires
- polypropylene fibers/TEC (Xe- $C_4H_{10}$ ),  $e/\pi$  identification, tracking and momentum reconstruction using dE/dx



Xinhua Li Univ. of California, Riverside, CA 92521, USA



# **TRDs for Cosmic Rays**

- CRN (1985): polyolefin fibers/MWPC (Xe-He-CO<sub>2</sub>), primary cosmic ray energy measurement (Space Shuttle)
- > WIZARD-TS93 (1993): C-fibres/MWPC (Xe-CO<sub>2</sub>), e/hadron identification (balloon flight),  $\varepsilon_{\pi} \sim 10^{-3} @ \varepsilon_{e} \sim 90\%$
- > HEAT (1994): fibers/MWPC (Xe-CO<sub>2</sub>), e/hadron identification (balloon flight),  $\varepsilon_{\pi} \sim 10^{-3} @ \varepsilon_{e} \sim 90\%$
- > MACRO (1994-2000): CH<sub>2</sub> foam/square proportional tubes (Ar-CO<sub>2</sub>), underground  $\mu$ -energy measurement (LNGS)
- > PAMELA (2004): C-fibers/straw tubes (Xe-CO<sub>2</sub>), e/hadron identification (satellite mission),  $\varepsilon_{\pi} \sim 10^{-2} \otimes \varepsilon_{e} \sim 90\%$
- > AMS2 (2006): Fiber/straw tubes (Xe-CO<sub>2</sub>), e/hadron identification (Space Station)  $\varepsilon_{\pi} \sim 10^{-3} 10^{-2} @ \varepsilon_{e} \sim 90\%$

# Hadron Colliders beyond LHC

Two main routes past LHC:

| increase luminosity                                 | increase energy:                                                                     |
|-----------------------------------------------------|--------------------------------------------------------------------------------------|
| SLHC                                                | VLHC                                                                                 |
| L=10 <sup>35</sup> cm <sup>-2</sup> s <sup>-1</sup> | Phase I: L=10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> , √s = 40 TeV           |
| √s = 14 TeV                                         | Phase II: L=5-2×10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> , √s = 125-200 TeV |

#### ELOISATRON: $L=10^{36}cm^{-2}s^{-1}$ , $\sqrt{s} = 200-1000 \text{ TeV}$

Plans to reach far-energy frontier beyond the LHC require a significant, continued world-wide R&D effort, based on realistic studies of experimental conditions and ability to detect and reconstruct event characteristics in full. Fast particle (leptons) identification detectors (TRDs?) are needed!

Some R&Ds for fast TRDs: TRDs to tag high energy hadron beam (as trigger or veto)

- >E769 (1991)-E791: pions/kaons/protons beam at 250 GeV/c-500 GeV/c (2 MHz rate),
- >24 modules radiator (polypropylene foils)/double-gap MWPCs (Xe-CO<sub>2</sub>),
- >drift time ~ 120 ns (not yet so fast...),

>protons contamination of 2% @ 87% pions efficiency Fast TRD to tag high energy hadron beam (as trigger or veto)

- TRD for SPS-beam proposed for NA57 experiment (1999)
- pions/kaons/protons beam ~ 200 GeV/c (4 MHz rate),
- 16 modules radiator (C-fibers)/double straw tubes layer (Xe-CO2),
- short drift time ~ 40 ns !
- protons (pions) contamination:
   2-3 % @ 90% pions (protons) efficiency

# Fast-TRD for a SPS-beam: detector view (P.Spinelli et al., 1999)



Radiator: 5 cm thick, made of short carbon fibers of 7  $\mu$ m diameter X-ray detector: kapton (30  $\mu$ m thick) straw tubes, 4 mm diameter Gas: Xe-CO<sub>2</sub> (70%-30%) @ 1 bar pressure









 $e/\pi \sim GeV/c \implies \pi/p \sim 100 \ GeV/c \ up \ to \ 1 \ TeV/c$ 

Limitations of TRD electron/hadron rejection power

- ♣ Hadron interactions (mainly in the radiator material) →short TRDs !
- **4** Energetic  $\delta$ -electrons on the hadron track $\rightarrow$ gaseous chambers indicated...
- dE/dx relativistic rise for hadrons in gaseous detectors @ a few 100 GeV/c





CsI 37µ thickness, decay time = 630 ns next R&D:  $Lu_2S_3$ :Ce, decay time =32ns! (very fast...) PM  $\rightarrow$  Silicon *multi-microcounter* PM (<u>Dolgoshein talk</u>)

## Landau and TR energy distributions



# **Rejection power**



P. Spinelli - 42nd Eloisatron INFN Workshop, Erice, 2003





# SSD Calibration

The ADC channel distribution is fitted with a Landau distrib.: the most probable value has been set to 111 keV for pions at 3GeV/c in 400 μm (<u>Bichsel PDG 2002</u>)



P. Spinelli - 42nd Eloisatron INFN Workshop, Erice, 2003

# SSD Noise





- ✓ The particle trajectory in the bending plane is approximated by an arc of a circle
- ✓ The tangents to the trajectory are drawn from the points at the beginning and at the end of each radiator
- ✓ TR X-ray search is performed in the region of the particle shadow
- X-ray clusters must have at least one strip with S/N > 3σ (4 keV); adjacent strips with S/N > 1σ are also included in the cluster



# Si-TRD test beam performance

Si-TRD electron tagging:

At least one TR photon (in the shadow region)

|                     | 3 GeV/c<br>1T | 3 GeV/c<br>0.5T | 5 GeV/c<br>1T | 5 GeV/c<br>0.5T |
|---------------------|---------------|-----------------|---------------|-----------------|
| e efficiency        | 80%           | 60%             | 55%           | 30%             |
| $\pi$ contamination | 1.3%          | 1.3%            | 1.5%          | 1.5%            |
| Rejection power     | 1.6%          | 2.1%            | 2.5%          | 4%              |

Time response  $\sim \mu s$ , depending on the electronics, (fair...) But no gas is needed, and it can be used as spectrometer







P. Spinelli - 42nd Eloisatron INFN Workshop, Erice, 2003



#### GEM (= Gas Electron Multiplier)

Thin metal-coated polymer foil chemically pierced by a high density of holes (technology developed at CERN)



Typical geometry: 5 μm Cu on 50 μm Kapton 70 μm holes at 140 mm pitch

F. Sauli, Nucl. Instrum. Methods A386(1997)531





# Conclusions

- TRDs are well suited for high energy particle (lepton) identification (->TeV region)
- TRDs can also be used for the measurement of known mass particles
- TRDs can be used as first level trigger fast devices on high energy beam lines
- R&D results on novel TRDs are promising for PID for next generation of "super colliders"