

"System Aspects of (Gaseous) Tracking Detectors...

... or what can we learn (have we learnt) from a LHC Detector?

Outline

[CMS and ALICE]

- Definitions & Terminology
- Tracking in LHC heavy ion collisions
- The challenges
- The ALICE TPC and beyond?
- Outlook
 - A TPC for a Linear Collider
 - Thoughts and ways to go towards solutions

Definitions & Terms

• 'System'

 A system, for our case, is the <u>entire</u> instrument built for an experiment or collaboration, to collect, filter, and analyze data (e.g. ALICE, CMS, ALEPH...).

• 'Detector'

A detector or subsystem is a component of the 'system' with specific tasks congruent with the other sub-systems.

'Optimization'

 Although specific in its task(s), a detector must not be optimized for highest performance for itself, but rather be 'subordinate' to the global system objectives.

System Aspects & Optimization

- Optimization is: <u>Build to purpose</u>!
 - Compliance with specs, schedule and cost
 - Compatibility (*sociability*) with neighbor detectors (x₀, noise, heat...)
 - Adapting to environment and run conditions
 - Respecting safety regulations and
 - Securing capital investment.

• This requires a coherent, system oriented, execution plan from R&D to commissioning!

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

• UA1 & CMS: A coherent <u>system</u> concept

- <u>'Fail-safe'</u> muon detection with large absorber (comp.)
 - \rightarrow magnet design and specs
 - → calorimeter design
 - → tracking detector design

• ALICE TPC: A coherent <u>detector</u> concept

- <u>'Low-mass'</u>, low disturbance premise for the measurement of low momenta and particle identification
 - → Field cage material, gas choice
 - ➡ Gas gain
 - Readout scheme & electronics
 - Tolerances

ADDA

Counter Examples

• The U-TMP calorimeter of UA1:

- Perhaps too ambitious (built to purpose?)
- Underestimate of technical complexity
- Failed on cost and schedule issues

• The MSGC tracker of CMS:

- Overoptimistic laboratory results
- Nonconformity with real environment
 - sparks from hadronic interactions with substrate
- Failed on schedule and milestone adherence
- Or, was it a political issue?

LHC Lesson 1

- Unprecedented rates (p-p) & multiplicities (heavy ions)
 - p-p-physics at the picobarn level (want \mathcal{L} high)
 - Pb-Pb-physics at the millibarn to barn level (want \mathcal{L} low)
 - LHC stored beam energy
 ~ 60 kg of TNT equivalent
- Radiation damage
- Inaccessibility of apparatus
- Duration and size of projects
- Particularly difficult transition for LEP "descendants"

Thomas C. Meyer/CERN-EP September 28 - October 4, 2003

NA49: Pb-Pb

158 GeV/nucleon

Lessons from LHC Pb-Pb

The principal challenge is track density

 dN_{ch}/dη ~ 8000^{*}) (for |η| ≤ 1) --> ~24'000 primary particles (charged + neutral) + ~ 50% secondaries --> ~ 2 x10⁷ hits

Full projection into readout plane

Slice of 2° in θ

*) very conservative assumption

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Consequence: Occupancy $\longrightarrow TPC$

- Why a TPC?
 - For coping with high <u>instantaneous</u> rates, TPC is best suited, for it delivers <u>space points</u>, and many of them (redundancy).
 - TPCs are relatively massless --> strong reduction in secondary particle production (background)
- We define Occupancy
 - N_{above}/N_{all} in pad-time-space
- For ALICE TPC:
 - Innermost pad row: $\leq 50\%$
 - Outermost pad row: $\leq 17\%$
 - Average occupancy: 25%

The Role of Tracking in HI Physics

- Momentum measurement
 - For hadronic and leptonic observables $100 \text{ MeV/c} < p_t < 10 \text{ GeV/c}^*$
- Particle identification
 - Separation of hadrons and identification of elec.
- Tracking
 - Matching with inner and outer trackers
 - High track finding efficiency

^{*)} limited by magnetic field strength

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Performance Goals: eg. ALICE-TPC

- Track finding efficiency:
 > 95% for p_t > 100 MeV/c
- Momentum resolution:
 - $dp_t/p_t < 1.2 1.5\%$ for MIP

- dE/dx-resolution:
 - < 10% (at high density)
- Rate capability:
 - 200 Hz central Pb-Pb ($\mathcal{L} = 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$)
 - $-1 \text{ kHz p-p} (\mathcal{L} = 3 \text{ x } 10^{30} \text{ cm}^{-2} \text{ s}^{-1})$

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

ALICE TPC: Layout

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Challenge: Low Mass

- Needed for
 - (e-identification/TRD)
 - Minimizing multiple scattering
- Choose <u>composite</u> material for both the inner field cage and containment structure:

 Choose <u>neon</u> instead of argon as main gas component

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Field Cage: Design Objectives

• Ensure:

- Stable gas gain:
- Drift field:
- Temperature stability:
- Drift gas purity:

 $> 10^{4}$

400 V/cm with $E_r/E_z \le 10^{-4}$

- $\Delta T \leq 0.1 ~^\circ C$
- $< 5 \text{ ppm O}_2 \text{ and } 10 \text{ ppm H}_2\text{O}$

• Provide high mechanical accuracy for...

- Central electrode:
- Readout plane:

250 μm (planarity and position)250 μm (idem)

• High structural integrity at low mass:

- Use composite honeycomb structures: Nomex, Tedlar, fiber matrices
- Operate safely at very high voltages (100kV)
 - Use double wall insulation (containment)

Field Cage: Components

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Challenge: E-Field Uniformity

- Provide E-field homogeneity of $dE_r/dE_z \le 10^{-4}$, to match intrinsic TPC space-point resolution (300-2000 µm):
 - Rods even out irregularities on cylinder surfaces (mm!).
 - Suspended strips <u>avoid</u> <u>surface charges</u> (NA49).
 - Central electrode vs readout plane <u>alignment</u> <u>250 µm/2500 mm!</u>
 - Severe constraints for <u>large structures</u>!

 Automation
 Automation

 Automation
 A

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Challenge: Gas

• Options:

Courtesy Rob Veenhof: "Choosing a gas mixture for the ALICE TPC" ALICE Internal Note

	Helium	810	\$	0 2	E 4
ρ [g/l]	6	θ	8	92	9
X ₀ []m	Ø	2	۵	8	θ
ո _ր [/ ֆո	Z	6	8	θ	9
µ₀ [m ²/V \$		4	5		

• Choose Ne plus CO₂ as quencher:

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Gas Choice: Consequences

• Ne-CO₂ is very sensitive to <u>temperature</u>, pressure and mixture variations:

Ex.: <u>Temperature</u> sensitivity:

 $\frac{3.25 - 2.25 \ cm/\mu s}{2.83 \ cm/\mu s} / 100 \ ^{\circ}K = \ \underline{0.35\%} / ^{\circ}K$

To limit track distortions to the intrinsic resolution of the detector (~ 1000 μm) ΔT must not exceed 0.1 °K

Courtesy Rob Veenhof: "Choosing a gas mixture for the ALICE TPC" ALICE Internal Note

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

TPC: Thermal Isolation

Complex integration and operation

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

46

cm

Readout Chambers

From inside out: 64 rows with 4 x 7.5 mm² 64 rows with 6 x 10 mm² 32 rows with 6 x 15 mm²

Anode wire plane <u>without</u> field wires

450

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

ALICE TPC end plate

Challenge: Readout in HI Tracking

z-coordinate (time direction):

- smaller time bins, but...
- signal/noise gets critical for $\tau_{FWHM} < 200 \text{ ns}$
- temporal signal is <u>diffusion limited!</u>

r-\$-direction (pad direction):

- Smaller pads, but...
- No. of channels increases --> cost!
- Sense wire HV to ground gets critical.
- Resolution is limited by <u>diffusion, fluctuations and angular effects.</u>

• Solution:

- Choose the pad-time area that still yields reasonable signal (S/N > 20).
- For a given pad area, optimize the aspect ratio
- Minimize diffusion --> high drift fields.

Filter: The Ion Tail Problem

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

TPC Readout: FEC

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Alternative TPC Readout?

- The quest for more signal!
 - Without increasing gas gain;
 i.e. avoid instabilities & aging;
 - Without increasing primary ionization;
 i.e. the space charge problem;
- Integrated designs...
 - With higher component density and -safety
 - With better pulse shaping (ion tail problem)

ATC

The Ring Cathode (RCC)

- Is a classical proportional chamber, with
 - <u>3-dimensional</u> cathode structure (rings) to "catch" more ions;
 - Induced signal ~ 4 (2) times that of classical TPC with (without) field wires.
 - Gating scheme critical: positive ion feedback not suppressed to the 10⁻⁴ level (B)
 - Only one wire plane (anodes) 🙂

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

The GEM Readout

Perhaps the most promising future readout technique:

– No more wires! 😊

- High gain, and good electron collection efficiency (~ 95%). ^(c)
- Essentially no $E \ge B$ effect. \bigcirc
- Pad signal ~ 100% electron induced (no ion tail) ^(c), but no PRF. ^(B)
- Ion suppression not at the level of 10⁻⁴.
- Spark rate of ~ 10⁻³ Hz (background), and 10⁻³ sparks per incident a-particle.
- Gap uniformity for dE/dx crucial.

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Other Ways to Improve?

- What, if B-field were higher?
 - Curling tracks score additional hits and hence <u>increase occupancy</u> and space charge.
 - <u>Increase distortions</u> due to *E* x *B*-effect in drift volume.
 - Cold gas has practically no diffusion suppression ($\omega \tau$).

• Better pattern recognition algorithms?

- Faster processors could run on more combinatorials

(secondary vertices),but cluster-overlaplimits resolving power.

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Other Ways to Improve

• Gases?

- No dramatic (factor 10) increase in v_d feasible.
- If Ne-CO₂ remains prime choice, HV would become excessive for long paths.
- 100 kV are already tricky to handle.
- <u>Given all odds (flammability, toxicity,</u>
 <u>corrosiveness, aging, HV and cost) our (ALICE's)</u>
 <u>choices are extremely limited if not exhausted.</u>

The (ALICE) TPC, is it...

- a test bench for tracking *beyond LHC*?
 - Powerful pattern recognition:
 - Occupancy (space-time-bins) $\leq 50\%$!
 - Conceptually simple device.
 - Robust construction,
 - but need tight control on mechanical, electrical & environmental parameters.
 - Adaptable & exchangeable readout techniques.
 - Proven technology in PEP4, ALEPH, NA49, STAR.

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

...The (ALICE) TPC...

- In hadron colliders the TPC is severely 'handicapped' from:
 - <u>Space charge accumulation</u>: Pb-Pb with $\mathcal{L} \leq 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$
 - <u>Long drift/memory time</u>: p-p: $\mathcal{L} \leq 3 \times 10^{30} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$ 1 kHz maximum for chosen gas
- If $dN_{ch}/d\eta \sim s^{1/2}$ (RHIC!), abandon exclusive studies and search for inclusive/selective signatures --> abandon TPCs.
- Perhaps TPC ideally suited for lepton colliders

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Outlook:Tracking at TESLA

Relevant Machine Pa	rameters:	TESLA-500	TESLA-80
E _{cm}	[GeV]	500	80
Repetition rate	[Hz]	5	4
Beam pulse length	[µs]	9 0	6
No. of bunches/pulse		Ø	8
Bunch spacing	[ns]	3	65
Luminosity (e $+$ e $-$)	[cm ⁻² s ⁻¹]	34	5 8 ³⁴

- Substantially less background than at LHC.
- Well defined initial state, clean event signatures.
- Precise measurement of charged particle momenta
- High-resolution track finding for jet-physics & event pile-up
- dE/dx resolution of < 5% for good *π*-*K* separation
- Systematic effects below 10 µm!

Courtesy: Stephan Roth, RWTH Aachen

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Outlook: A TPC for TESLA

- Large volume
 - $-r_i = 320 \text{ mm}, r_{out} = 1700 \text{ mm}, I = 2 \text{ x } 2500 \text{ mm}$
 - $-V_{gas} = 38 \text{ m}^3$
- Light structure
 - $x/x_0 \sim 3\%$ to outer field cage
- High magnetic field: B = 4T
- 'Fast' gas: Ar-CO₂-CH₄ (93-2-5)
 - $E_d = 230 \text{ V/cm} (60 \text{ kV max})$
 - v_d = 4.6 cm/µs (55 µs max = 160 bunch x-ings)
 - $D_{t(l)} = 70 (300) \, \mu m/cm^{1/2} @ 4T$
 - Average $\sigma_{r\phi}$: 100 or 150 µm (dep. on gas: P10 or above)
- Readout: Micro-pattern devices
 - <u>GEM</u> (pads, chevrons of 1-2 mm width)
 - Micromegas

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

TPCs: Today, 2007 and 2014?

Relevant Parameters:		STAR TPC	ACEPC	TSA TPC
Inner radius	[mm]	500	8	0
Outer radius	[mm]	2 00	8	0 00
Length	[mm]	2 0	2 00	2 00
Volume	[m³]	9	θ	8
Material x/x ₀	[%]	3	B	3
Pad size	[mm ²]	85 0 85 0	886页) 1887页)	8
No. pad rows		<u>5</u>	6	D 0
Total No. of pads		6 8	55 36	1 20000
Magnetic field B	[T]	005	005	4
Gas		£9 4 9 €0)	9 ₂ 90)	<u>₽</u> 4⊖ 2 9 }
Drift field E _d	[V/cm]	5	4 0	Ø
Drift velocity v d	[cm/µs]	5 5	8	6
Total drift time	[µs]	8	8	55
Maximum HV	[kV]	8	00	60 0
Diffusion transverse	[µm/cm ^{1/2}]	2@ 5T	Q	Ø
Diffusion logitudinal	[µm/cm ^{1/2}]	6	Q	B 0
Resolution in r- ϕ	[µm]	500 2 00	00000	0 0
Resolution in z	[µm]	000000	60900	60000
dE/dx resolution	[%]	8	7	3
Tracking efficiency	[%]	0 þ	9 ¢	8

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

Changes to face, now and later

- Non-traditional budget restrictions
- Highly complex and diverse projects
 - Technically, geographically, financially, culturally...
- Increased product complexity & demands on quality
 - Detector performance —> data quality
 - --> Our credibility & reputation --> share holding
- People will disappear, knowledge must stay!
 - Need good documentation (EDMS), traceability, continuity
- Multinational organizational structures
 - Focusing on equity sharing & equally ranking partnerships;

From "Result-" to Project Orientation

- Create awareness of project management, i.e. ensure:
 - Completion
 - Adequateness
 - Compliance

- deliver on time and within budget!
- build for purpose!
- conformity, performance.

• Perform:

- Risk analysis and
- rigorous <u>contingency</u> assessment.

Innovative Detectors for Supercolliders Erice (Trapani), ITALY

ATOM

From Dogmatic to Pragmatic

- Accept PM as a tool to achieve a <u>common goal</u>!
 - Governance (leadership) is not dictatorship.
 - Applying rules is not ruling.
 - Controlling is corrective monitoring.
- Apply a balanced level of <u>central</u> steering:

Level of steering

- The <u>"Checks-and-Balance</u>" approach, but
- <u>High level</u> of steering during construction and assembly

Final Thoughts

• Technical:

- Today's (!) LHC tracking detectors have opened a new era of state-of-the-art technologies, and <u>are</u> bench marks for developments beyond the LHC.
- TPCs will probably disappear from hadron colliders and return to their origin, $e^+-e^-(\mu^+-\mu^-)$ machines where, in conjunction with micro-pattern devices, they constitute the ideal and most cost-effective central tracking systems.

• General:

- The LHC is the gateway to the future, provided...
 - ...that overall coordination and rational in project management methods are implemented and carried out by dedicated project teams in a <u>'check and balance' spirit with central steering</u>.