NEW TRENDS IN GAS DETECTORS

NEW TRENDS IN GAS DETECTORS

Fabio SAULI CERN, GENEVA, SWITZERLAND

INNOVATIVE DETECTORS FOR SUPERCOLLIDERS ERICE, 28 September-4 October 2003

NEW TRENDS IN GAS DETECTORS 3

MSGC Performances

NEW TRENDS IN GAS DETECTORS 5

MSGC Discharges

A gain ~ 3000 is needed for detection of minimum ionizing tracks. In presence of heavily ionizing particles background, the discharge probability is large:

NEW TRENDS IN GAS DETECTORS 8

MICROMEGAS for COMPASS

COMPASS: FORWARD SPECTROMETER PRIMARY BEAM ~10⁸ µ/spill

LARGE SIZE (40x40 cm²) DETECTORS 5 cm Ø DEAD ZONE IN THE CENTER

A. Magnon et al, Nucl. Instrum. Meth. A478(2002)210

NEW TRENDS IN GAS DETECTORS 9

DISCHARGE RATE PER SPILL:

Detector and electronics designed to withstand discharges

Dead time per discharge~ 10 ms

A. Magnon et al, Nucl. Instrum. Meth. A478(2002)210

GEM Gas Electron Multiplier

Thin metal-coated polymer foil chemically pierced by a high density of holes (technology developed at CERN)

NEW TRENDS IN GAS DETECTORS

Typical geometry: 5 µm Cu on 50 µm Kapton 70 µm holes at 140 mm pitch

F. Sauli, Nucl. Instrum. Methods A386(1997)531

F.SauldEP

JESSE/EST March 3 Sec 2

NEW TRENDS IN GAS DETECTORS 12

GEM Field

On application of a voltage gradient, electrons released on the drift side drift into the hole, multiply in avalanche and transfer the other side.

- Freedom in shape of the detector (including non-planar)
- Readout separated from multiplying electrodes
- Multiple cascaded structures possible (large gains, feedback suppression)
- Cheap and reliable

NEW TRENDS IN GAS DETECTORS 15

SGEM Discharges

Gain: 5.9 keV X-rays Discharge probability: 5 MeV α particles

Fabio Sauli - CERN **NEW TRENDS IN GAS DETECTORS** 16 **Multiple GEM Structures** Cascaded GEMs achieve larger gains and safer operation in harsh environments DRIFT **Double GEM** Triple GEM ED DRIFT DRIFT GEM 1 Ет TRANSFER ED DRIFT GEM 2 INDUCTION E GEM 1 READOUT ET1 **TRANSFER 1** GEM 2 ET₂ **TRANSFER 2** GEM 2 E INDUCTION READOUT C. Buttner et al, Nucl. Instr. and Meth. A 409(1998)79 S. Bachmann et al, Nucl. Instr. and Meth. A 443(1999)464

NEW TRENDS IN GAS DETECTORS 17

NEW TRENDS IN GAS DETECTORS

18

GEM: freedom of shapes

ESA-INTEGRAL Mission Prototype GEM for JEM-X (25 cm Ø):

Large GEMs for COMPASS

31x31 cm² active 12 sectors+ central beam killer ~ 100 manufactured at CERN

NEW TRENDS IN GAS DETECTORS 19

NEW TRENDS IN GAS DETECTORS 20

3-M GEM mass production

Thousand delivered

NEW TRENDS IN GAS DETECTORS 22

Narrow collected charge profile

NEW TRENDS IN GAS DETECTORS 23

2-Dimensional Readout

Electrons are collected on patterned readout boards. A fast signal can be detected on the lower GEM electrode for triggering or energy discrimination. All readout electrodes are at ground potential.

NEW TRENDS IN GAS DETECTORS 24

NEW TRENDS IN GAS DETECTORS 25

Radiation Tolerance

GEM detectors are rather insensitive to aging under sustained irradiation

C. Altunbas et al, DESY Aging Workshop (Nov. 2001) Nucl. Instr. and Meth. A

NEW TRENDS IN GAS DETECTORS 26

B. Ketzer et al, IEEE Trans. Nucl. Sci. NS-48(2001)1065

C. Altumbas et al, NIM A490(2002)177

NEW TRENDS IN GAS DETECTORS 27

2-Dimensional Read-out Board

Two orthogonal sets of parallel strips at 400 µm pitch engraved on 50 µm Kapton 80 µm wide on upper side, 350 µm wide on lower side (for equal charge sharing)

80 μm

350 μm 400 μm

Beam killer

A central sector on each GEM, 5 cm in diameter, is independently powered. Application of a \sim 200 V lower potential on the sector completely kills detection of the main beam.

NEW TRENDS IN GAS DETECTORS 29

Spacer frame

Machined fibreglass frame with thin (~300 µm) spacer strips, 2 mm wide

NEW TRENDS IN GAS DETECTORS 30

GEM Chamber Manufacturing

Before mounting, and at each assembly step, GEM foils are HV tested in a N_2 gas box (requirement: < 5 nA at 550 V on each sector)

(The normal operating voltage is ~ 370 V)

NEW TRENDS IN GAS DETECTORS 32

COMPASS experiment: 20 Triple-GEM detectors

Forward spectrometer, primary beam ~10⁷ Particles/second ~ 10 Tracks/event, 50 μ m accuracy, 10 ns time resolution

NEW TRENDS IN GAS DETECTORS 34

Cluster charge

Very good X-Y charge correlation, exploited for multi-track ambiguity resolution:

NEW TRENDS IN GAS DETECTORS 35

Beam killer

strips]

Hit Position [350 μ m

The central beam area can be remotely activated for calibrations and alignments, and disabled during high intensity runs.

NEW TRENDS IN GAS DETECTORS 36

NEW TRENDS IN GAS DETECTORS 37

COMPASS high rate beam ~ 10^7 muons/s

U-V distribution of reconstructed tracks:

B. Ketzer and Q. Weitzel (COMPASS)

38

0.85 Average, spacers 0.8 removed: E=98.7 % 0.75 **GM06U** 0.7 50 -100 -50 100 150 -150 0 u (mm)

B. Ketzer and Q. Weitzel (COMPASS)

Fabio Sauli - CERN **NEW TRENDS IN GAS DETECTORS** Intrinsic time resolution Triple GEM for LHCb muon detector: Ar-CO₂ 70-30 rms 9.7 ns $\mathbf{20}$ a $\mathbf{80}$ T(ns) Ar-CO₂-CF₄ 70-20-20 rms 3.5 ns 0 T(ns) $Ar-CO_2-C_4H_{10}$ 65-8-20-7 rms 3.4 ns T(ns) Ar-CF₄-C₄H₁₀ 65-28-7 rms 3.1 ns T(ns) G. Bencivenni et al, NIM A 488(2002)493

NEW TRENDS IN GAS DETECTORS 42

GEM TPC

Narrow pad response function: $\Delta s \sim 1 mm$ Fast signals (no ion tail): $\Delta T \sim 20 ns$

Very good multi-track resolution: $\Delta V \sim 1 \text{ mm}^3$ (Standard MWPC TPC ~ 1 cm³)

lon feedback suppression: $\frac{l^+}{-} \sim 2\%$

No ExB distortions

Freedom in end-cap shapes

Robustness

INVESTIGATED FOR: TESLA LINEAR COLLIDER PHENIX UPGRADE MICE (muon cooling) CLAS (JLAB) Astrophysics

NEW TRENDS IN GAS DETECTORS 43

NEW TRENDS IN GAS DETECTORS 44

Fabio Sauli - CERN

GEM-TPC studies for the Linear Collider

GEM-TPC prototype Carleton-Montreal-Victoria-TRIUMF LC TPC Group: Aachen Berkeley Carleton/Montreal/Victoria DESY/Hamburg Karlsruhe Cracow MIT MPI-Munich NIKHEF Novosibirsk Orsay/Saclay Rostock St. Petersburg

NEW TRENDS IN GAS DETECTORS 45

GEM TPC: pad width optimization

Resolution and cost vs pad width:

NEW TRENDS IN GAS DETECTORS 46

GEM-TPC for Linear Collider

Resolution studies with 2x6 mm and 3x5 mm pad rows:

Carleton-Montreal-Victoria-TRIUMF D Karlen- Prague Nov. 2002

NEW TRENDS IN GAS DETECTORS 47

NEW TRENDS IN GAS DETECTORS 48

Fabio Sauli - CERN

GEM-TPC Studies

LBNL - Karlsruhe - CERN

GEM-TPC studies

Two events, recorded in the CERN test beam run (August 03)

8 pad rows equipped

LBNL- Karlsruhe - CERN

NEW TRENDS IN GAS DETECTORS 50

Simplified readout schemes: Chevron

B. Yu et al, Trans. Nucl. Sci. NS50(2003)836

Fabio Sauli - CERN **NEW TRENDS IN GAS DETECTORS** 51 **Resistive anode readout** Signals are read out by induction through a resistive foil anode: GEM Setup for Resistive Anode Tests Drift plane 5.4 mm drift gap GEM 1 2 mm transfer gap GEM 2 4.4 mm induction gap

Resistive anode foil 33 k Ohm/sq Readout pads

Carleton-Montreal-Victoria

NEW TRENDS IN GAS DETECTORS 52

Resistive anode readout

Charge cluster size ~ 1 mm; signal detected by ~7 anodes (2 mm width)

M. S. Dixit et al, Subm. Nucl. Instr. Methods A (2003)

NEW TRENDS IN GAS DETECTORS 53

NEW TRENDS IN GAS DETECTORS 54

GEM-TPC readout: Hexaboard

S. Bachman et al, NIM A 478(2002)104

NEW TRENDS IN GAS DETECTORS 56

TPG: Time Projection GEM for MICE Muon Ionization Cooling Experiment

Triple-GEM TPC with Hexaboard read-out

Simulated tracks:

Geneva, CERN, RAL, Legnaro,

NEW TRENDS IN GAS DETECTORS 58

TACTIC at TRIUMF

Study of ${}^{8}Li(\alpha,n)^{11}B$ reaction for astrophysics Radial He-filled TPC with cylindrical GEM readout:

NEW TRENDS IN GAS DETECTORS 59

Multi-GEM for photon detection

Multiple GEM detectors permit to achieve very large gains (10⁶) in photocathodefriendly pure noble gases or poorly quenched mixtures. Reduced transparency strongly suppresses photon and ion feedback

A. Buzulutskov et al, Nucl. Instrum. Methods A443(2000)164

NEW TRENDS IN GAS DETECTORS 60

UV Photon detection

NEW TRENDS IN GAS DETECTORS 62

GEM-RICH

Triple-GEM Csl reflective-CH₄ fill

Single photoelectron event:

5 6

4

7 8

Strip number

2 3

0 1

PH distributions for increasing UV light attenuation:

NEW TRENDS IN GAS DETECTORS 63

GEM-RICH Collimated UV source Position scan on 8 adjacent strips (200 µm pitch)

Two positions 200 μm apart: fwhm ~ 150 μm (including source collimation!)

Computed vs real position:

NEW TRENDS IN GAS DETECTORS 64

PHENIX Upgrade

PHENIX: Search for Quark-Gluon Plasma at RHIC Au-Au collision at 200 GeV:

PHENIX UPGRADE: Detect low-mass e⁺e⁻ pairs from decay of light vector mesons ρ , ω , ϕ

HADRON BLIND DETECTOR: Identify electrons with > 90% efficiency Pion rejection ~200

NEW TRENDS IN GAS DETECTORS 65

NEW TRENDS IN GAS DETECTORS 66

PHENIX Upgrade

Radiator: CF₄ gas Photocathode; CsI

- wide bandwith (6 to 11.5 eV)

 $N_{0} \sim 900$

Detector: Triple GEM with reflective photocathode on first GEM

large gains in CF4
no photon feedback from avalanches

~ 40 detected photoelectrons/electron

NEW TRENDS IN GAS DETECTORS 67

GEM operation in CF4

Photoelectron extraction from CsI: gas/vacuum

A. Breskin, A. Buzulutskov, R. Chechik Nucl. Instr. and Meth. A 483(2002)658 D. Mörmann et al, NIM A504(2003)93

NEW TRENDS IN GAS DETECTORS 68

Sealed GEM Photomultiplier

Semi-transparent CsI photocathode: towards large area, position-sensitive photomultipliers

Single photo-electron signals:

A. Breskin et al, Nucl. Instr. and Meth. A478(2002)225 30 3GEM+PCB Vgem=492V Single p.e. 100mV 2,43

Fabio Sauli - CERN **NEW TRENDS IN GAS DETECTORS 69 Micro-Hole and Strip GEM** Ion feedback reduction: 190?µ $2 \mathrm{m}$ 140hν ↑E_{drift} 70?m ions ĴV_{с-т} N_{ions} ₩ VA-C \mathbf{E}_{ind} ~ 100 J.M.Maia et al. IEEE NS49 (2002) J.M.Maia et al. NIM A203(2003)364

NEW TRENDS IN GAS DETECTORS 70

Micro-Hole and Strip GEM

J.M.Maia et al. NIM A203(2003)364

NEW TRENDS IN GAS DETECTORS 71

X-Ray Polarimeter

Photoelectrons from soft X-rays are emitted preferentially in the direction of polarization

Single GEM detector with 200 µm pitch pixel readout:

E. Costa et al, Nature 411(2001)662 R. Bellazzini et al Nucl. Instr. and Meth. A478(2002)13

NEW TRENDS IN GAS DETECTORS 72

Fabio Sauli - CERN

NEW TRENDS IN GAS DETECTORS 73

X-RAY EMITTING

PLASMA

X-ray plasma diagnostics

Single GEM pinhole camera with fast pixel readout

Readout: 32 pixels, 2 mm² each

D. Pacella et al, Rev. Scient. Instrum. 72 (2001) 1372 R. Bellazzini et al, Nucl. Instr. and Meth. A478(2002)13

Fabio Sauli - CERN

NEW TRENDS IN GAS DETECTORS 74

X-Ray plasma diagnostics

Image size 80x80 cm²

Plasma emission (at ~ 1.5 keV) sampled at 10 kHz: first observation of plasma rotation

D. Pacella, Princeton Plasma Physics Laboratory

Fabio Sauli - CERN

GEM optical imager

Scintillation light in a multiple GEM detector recorded by a CCD camera

