Interfacing a Managed Local Fabric to the GRID

LCG Review

Tim Smith IT/FIO

Contents

Fabrics, GRIDs and the interface

Interfacing

- User Management
- Security
- Worker Nodes
- SW distribution
- Gateway Nodes
- Milestones

Converging Development Fronts

- Tier-O Fabric Automation
 - Production
 - Software and Configuration Managers LXBATCH
 - Development/Prototypes
 - State and HW management systems, Monitoring, Fault tolerance
- LCG-0, LCG-1,... LCG-2
 - Deploying entire SW stack (including fabric!)
 - GRID Services and Operations
- Fabric GRID Integration
 - Establishing the boundaries and interfaces

2003/11/18

GRID Services Architecture

- Extra SW and Services
- Matching of Procedures
- Matching of Environment

Service Lifecycle Focuses

Prototype

- Proliferation, Elaboration
 - Focus on functionality
 - Performance and scalability

Risks

- Destabilisation
- Workload
- Simplification, Automation
 - Focus on uniformity, minimisation
 - Process and procedure
 - Availability and reliability
 - Stability and robustness

Production

User Management

- Passwd file handling > Certificate handling
 - Authentication: Gathering from VOs
 - Authorisation
 - Mapping to local identities (real or pool)
 - Building gridmap files from widely gathered info sources
- Current integration issues
 - Named accounts > Temporarily assigned accounts
 - 12,000 personal on LXPLUS
 - LCG-1: 50 static pool accounts
 - LCG-2: 80 dynamic pool accounts
 - Accounting and Auditing
 - Feedback on usage
 - Blocking / cleaning out dead-wood
- Open Issues
 - VOMS / AuthZ integration
 - Registration interface centralised to local procedures
 - User interaction Notification of service change or incidents
 - User + Service Manager familiarity with new services

User Management

Prototype

- Focus on adding users
 - avoiding being a blockage to new user uptake
- Risks
- Multiple authorisations confusion

 c.f. multiple groups of the late 1990s

 Avoiding accumulated deadwood and dormant accounts
 - minimise security exposures and recooperate resources

Production

Security

- Security
 - Extending: local practices to encompass grid demands
 - Instead of processing and raising alarms ...
 - Collection and storage of sufficient history of raw files
 - No history of attack patterns
 - Adapting: Tracking of incidents and blocking of compromised accounts - but now anonymous accounts and certificates to be blocked
 - Audit requirements
 - Incident response procedures
 - Revocation procedures
 - Risks:
 - Exposure: Incident propagation requires coordinated approach

SW distribution

- OpSys and Common Applications
 - http://www.quattor.org
 - SPMA and NCM
 - HTTP as SW distribution protocol
 - Load balanced server cluster
 - Pre-caching of SW packages on the node possible
 - Examples
 - LSF upgrade; 1000 nodes, 10 minutes, no interruption
 - Kernel upgrade; multiple version support, reboot later
 - Security upgrades; weekly, big KDE patch
 - Risks:
 - EDG toolkit long term support

SW distribution

- GRID + Application middleware
 - Packaging approaches: RPM / tar / PACMAN
 - Automating a workstation orientated approach
 - Complying to enterprise management requirements
 - Configuration complexity
 - Bulky, supplier orientated
 - 1050 RPMs for LXBATCH; 220 extra for simple WN
 - Work In Progress
 - Tuning dependencies
 - Trimming unnecessary/conflicting SW and services
 - gcc, python, tomcat
 - Risks: Push aside the production knowledge
 - Harder user support, SW maintenance, incident handling

SW distribution

- Applications Experiment SW
 - Rapid release cycles
 - Balancing User and Administrator preferences
 - Experiments desire for control of installation, validation and publication
 - Efficient local access; leverage SW distribution tools
 - Local Disks vs Shared file systems
 - Pragmatic approach in LCG-1
 - No intelligent cache yet so either
 - Copy at the start of every job
 - Shared file systems
 - Risks:
 - Duplication; Wasted resources in creation and housing
 - Hidden demands on reliability and stability of shared file systems

Batch Worker Nodes

- Solved some scalability issues like
 - NFS mounts of CE on WNs
 - Job Managers to address Gass-cache issues
- Interfacing to a mature batch scheduler
 - Build on lowest common denominator approach
 - Rudimentary use of batch scheduler power
 - Shifting scheduler decisions higher up the chain
 - Expose non-homogenous HW as multiple queues
- Open Issues
 - Wide area network access to/from batch nodes
 - Only 30% of 1000 LXBATCH nodes left on routed network
- Risks:
 - Drop in efficiency while learn to share with new queues

GRID Service Nodes

Functionality deployed: RB, CE, SE, UI, ...

Open Issues

- Coping with realistic loads jobs; long running, complex, chaotic
- Scalability
- Redundancy
- Operations
 - Learn to capture state and restart on other nodes
 - Learn how to upgrade without service interruptions
 - Do the services "age" or "pollute" the host nodes?

Milestones

- Fabric
 - Production: SPMA and NCM
 - July and November
 - Development: SMS, Monitoring, FT, HMS
 - October, November, September, October
 - On track for Q1 2004
- GRID Integration
 - August: 10 LXBATCH nodes integrated in LCG-1 (isolated from main LXBATCH)
 - 5 in LCG-0, manually configured
 - Iterating on automation and productionising
 - October: 100 LXBATCH nodes...
 - December: Full integration of LXBATCH
 - Delayed until early 2004

Conclusions

- A production fabric has
 - Inertia ... as a virtue!
 - Charted QoS
 - Scalability
 - Procedures and Manageability
- Cautious introduction of GRID services
 - Retain qualities and add functionality!