
The POOL Persistency Framework

POOL Project Status & PlansPOOL Project Status & Plans

Dirk Dirk DüllmannDüllmann, ,
ITIT--DB & LCGDB & LCG--POOLPOOL

LHCC Comprehensive Review of the LCG Application AreaLHCC Comprehensive Review of the LCG Application Area
25 November 200325 November 2003

The POOL Persistency Framework D.Duellmann 2

What is POOL? What is POOL?

•• Project Goal: Develop a common Persistency Framework Project Goal: Develop a common Persistency Framework
for physics applications at the LHC for physics applications at the LHC
– Pool Of persistent Objects for LHC

•• Part of the LHC Computing Grid (LCG)Part of the LHC Computing Grid (LCG)
– One of the first Application Area Projects

•• Common effort between LHC experiments and CERN Common effort between LHC experiments and CERN
ITIT--DB group DB group
– for defining its scope and architecture
– for the development of its components

The POOL Persistency Framework D.Duellmann 3

POOL Objectives POOL Objectives
•• To allow the To allow the multimulti--PB PB of experiment of experiment data and associated meta datadata and associated meta data to be to be

stored in a distributed and Grid enabled fashion stored in a distributed and Grid enabled fashion
– various types of data of different volumes (event data, physics and

detector simulation, detector data and bookkeeping data)

•• Hybrid technology approachHybrid technology approach, combining, combining
– C++ object streaming technology

• Root I/O for the bulk data
– Transactionally safe Relational Database (RDBMS) services,

• MySQL for catalogs, collections and meta data

•• In particular POOL provides In particular POOL provides
– Persistency for C++ transient objects
– Transparent navigation among objects across file and technology

boundaries
• Integrated with a external File Catalog to keep track of the file

physical location, allowing files to be moved or replicated

The POOL Persistency Framework D.Duellmann 4

POOL Timeline and StatisticsPOOL Timeline and Statistics
•• POOL project started April 2002POOL project started April 2002

– Ramping up from 1.6 to ~10 FTE
– Persistency Workshop in June 2002
– First internal release POOL V0.1 in October 2002

•• In In one yearone year of active development since then of active development since then
– 12 public releases

• POOL V1.4.0 is just being released
– Some 60 internal releases

• Often picked up by experiments to confirm fixes/new
functionality

• Very useful to insure releases meet experiment expectations
beforehand

– Handled some 165 bug reports
• Savannah web portal proven helpful

•• POOL followed from the beginning a rather aggressive schedule toPOOL followed from the beginning a rather aggressive schedule to
meet the first production needs of the experiments.meet the first production needs of the experiments.

The POOL Persistency Framework D.Duellmann 5

Component ArchitectureComponent Architecture
•• POOL is a component based system POOL is a component based system

– follows the LCG Architecture Blueprint
•• Provides a technology neutral API Provides a technology neutral API

– Abstract component C++ interfaces
– Insulates the experiment framework user code from

implementation details of the technologies used today
•• POOL user code is not dependent on implementation libraries POOL user code is not dependent on implementation libraries

– No link time dependency on implementation packages
(e.g. MySQL, Root, Xerces-C..)

– Backend component implementations are loaded at runtime
via the SEAL plug-in infrastructure

•• Three major domains, weakly coupled, interacting via abstract Three major domains, weakly coupled, interacting via abstract
interfaces interfaces

The POOL Persistency Framework D.Duellmann 6

POOL Component BreakdownPOOL Component Breakdown

POOL API

Storage Service FileCatalog Collections

ROOT I/O
Storage Svc

XML
Catalog

MySQL
Catalog

EDG Replica
Location Service

Explicit
Collection

Implicit
Collection

RDBMS
Storage Svc ?

The POOL Persistency Framework D.Duellmann 7

Work Package BreakdownWork Package Breakdown
•• Storage Manager Storage Manager

– Streams transient C++ objects into/from disk storage
– Resolves a logical object reference into a physical object
– Uses Root I/O for event data, a proof of concept with a RDBMS

storage manager prototype underway for other meta data

•• File Catalog File Catalog
– Maintains consistent lists of accessible files (physical and logical names)

together with their unique identifiers (FileID), which appear in the
object representation in the persistent space

– Resolves a logical file reference (FileID) into a physical file

•• Collections Collections
– Provides the tools to manage potentially (large) ensembles of objects

stored via POOL persistence services
• Explicit: server-side selection of object from queryable collections
• Implicit: defined by physical containment of the objects

The POOL Persistency Framework D.Duellmann 8

POOL MilestonesPOOL Milestones
•• First “Public” Release First “Public” Release -- V0.3 December ’02V0.3 December ’02

– Navigation between files supported, catalog components integrated
– LCG Dictionary moved to SEAL – and picked up from there

• Basic dictionary integration for elementary types
•• First “Functionally Complete” Release First “Functionally Complete” Release -- V1.0 June ’03V1.0 June ’03

– LCG dictionary integration for most requested language features including STL containers
– Consistent meta data support for file catalog and event collections

(aka tag collections)
– Integration with EDG-RLS pre-production service (rlstest.cern.ch)

•• First “Production Release” First “Production Release” -- V1.1 July `03V1.1 July `03
– Added bare C++ pointer support, transient data members, update of streaming layer data,

simplified (user) transaction model
– Due to the large number of requests from integration activities still rather a

functionality release than the planned consolidation release.
– EDG-RLS production service (one catalog server per experiment)

•• Starting from POOL V1.3 Starting from POOL V1.3
– (Being) Integrated with three experiment software frameworks
– Successfully deployed in larger scale experiment productions

•• Project stayed close to release data estimatesProject stayed close to release data estimates
– Maximum variance 2 weeks
– Usually release within a few days around the predicted target date

The POOL Persistency Framework D.Duellmann 9

POOL POOL -- Known IssuesKnown Issues

•• Need to improve on endNeed to improve on end--user documentationuser documentation
– Prepared a first user guide with V1.4

• General overview of the POOL architecture
• collecting some the experience gained during the framework integrations

– Expanding the set of example programs and prepare a hands-on tutorial
• POOL tutorial held in during the GridKa Computing school -> CSC 04

•• Testing is not perfect..Testing is not perfect..
– .. and will probably never reach the complexity of the tests from within the experiment

applications.
– 60 functional and integration tests are executed in an automated way each release cycle
– Feature requests now often come as a complete test case from the experiment. Thanks!

•• Performance Performance optimisationoptimisation not yet fully addressednot yet fully addressed
– Performance tests now exist for all components (addressed in June release)
– External design and code reviews setup for use of ROOT I/O and for Object cache

•• Schema Evolution and Stability of File FormatSchema Evolution and Stability of File Format
– Current strategy relies fully on ROOT I/O facilities

• The use of ROOT I/O as black box makes more generic schema evolution support non-
trivial

– POOL does not fully control the file format, but can help to detect unwanted format
changes during regression testing

The POOL Persistency Framework D.Duellmann 10

Storage ManagerStorage Manager

•• All basic functionality is providedAll basic functionality is provided
– Frequency of bug reports significantly dropped during the last

months
•• Mainly performance and consolidation, but…Mainly performance and consolidation, but…

– Current dictionary loading creates deployment problems
• All class dictionaries need to be loaded when ROOT file is

opened
• ROOT provides functionality to relax this constraint
• POOL will work with ROOT team to make lazy dictionary

loading available for POOL clients
– Embedded pointer to non-polymorph type – POOL should store

objects based on the pointer type
•• Internal Review: Provide ROOT with POOL references Internal Review: Provide ROOT with POOL references

and collection accessand collection access
– Looking at POOL plug-in for interactive ROOT

•• Will demonstrate that POOL can expose the schema Will demonstrate that POOL can expose the schema
evolution facilities existing in ROOTevolution facilities existing in ROOT

The POOL Persistency Framework D.Duellmann 11

POOL Performance POOL Performance -- first cut..first cut..

•• POOL has not really been POOL has not really been optimisedoptimised systematicallysystematically
– Because many functional changes still late in the first

experiment integration phase
– Still first results look reasonable

• We won’t be faster than ROOT
• We won’t create smaller files than ROOT

– But we want to control the overhead we put on top of ROOT –
comparing to ROOT in areas where root offers similar
functionality

– POOL collection performance show clearly that POOL
insulation overhead can be kept minimal (few percent level)

•• POOL provides more functionality and flexibility than POOL provides more functionality and flexibility than
vanilla ROOT vanilla ROOT
– comparing raw IO speed for very different operations risks to

be comparing apples with pears

The POOL Persistency Framework D.Duellmann 12

File Catalog PlansFile Catalog Plans

•• Used in the production environmentUsed in the production environment
– Several reports about successful use in experiment production

chain
– POOL waterfall model consisting of several catalog

implementations to allow a large degree of decoupling and to
cope with very different requirements is used and works

•• Extension to allow for typical Meta Data evolution use Extension to allow for typical Meta Data evolution use
casescases
– Eg new meta data elements are introduced during production

•• Composite CatalogsComposite Catalogs
– Accessing a single writable catalog together with several

shared read-only catalogs
– Eg a job reads some user files in addition to any file from the

large experiment production
•• Coming upComing up

– Upgrade to EDG-RLS 2.2 (required for LCG-2)
– Integration/reimplementation with Globus and ARDA catalogs

The POOL Persistency Framework D.Duellmann 13

POOL Collection FuturesPOOL Collection Futures

•• Several implementations exist and are used for prototypingSeveral implementations exist and are used for prototyping
– Integration with experiment frameworks just starting
– Still many open questions about requirements

• Is there a Collection Catalog (like the File Catalog)? A central one?
What collection meta data needs to kept?

• How do POOL collections tie in with grid middleware?
•• Collection implementation in POOL is a first stepCollection implementation in POOL is a first step

– But the real issue is not the implementation but rather conceptual
– Need active experiment involvement in this area

•• Role of collections in a grid environment needs clarification Role of collections in a grid environment needs clarification
and prototypingand prototyping
– Expect active collaboration with ARDA to come up with a model for

deploying collections in production and analysis environments

The POOL Persistency Framework D.Duellmann 14

RDBMS IndependenceRDBMS Independence

•• POOL should not depend on a particular RDBMSPOOL should not depend on a particular RDBMS
•• In addition In addition -- MySQL++ is becoming a constraintMySQL++ is becoming a constraint

– Need a replacement soon for several reasons
• Performance constraint on collections implementation
• Product does not seem to evolve anymore
• Dependent on internals of the GCC compiler

– Difficulties to port mysql++ based code to icc/ecc

•• Propose to move to OTL after a “market survey” Propose to move to OTL after a “market survey”
– Tests with OTL interfacing to MySQL, Postgres and Oracle suggest

that a high level of independence can be achieved
– Prototype implementations exist for MySQL FileCatalog and

Collections
•• Prototypes are now part of V1.4 internal releases cycles and Prototypes are now part of V1.4 internal releases cycles and

expected to reach production quality soonexpected to reach production quality soon

The POOL Persistency Framework D.Duellmann 15

Infrastructure & TestingInfrastructure & Testing

•• Move to AA testing tool Move to AA testing tool -- QMtestQMtest
– Align with other LCG projects

•• Several new platforms coming upSeveral new platforms coming up
– icc, ecc and VC for portability check of POOL code

and also as additional development platform
•• Automated data format regression testsAutomated data format regression tests

– Highest priority now as experiment data is now
being produced

– Complex schema test cases in collaboration with
experiments

•• Add traceability between bug reports and Add traceability between bug reports and
release contents and release validation testsrelease contents and release validation tests
– In collaboration with SPI

The POOL Persistency Framework D.Duellmann 16

SummarySummary
•• POOL has delivered a functional persistency framework and has bePOOL has delivered a functional persistency framework and has been en

integrated into frameworks of CMS, ATLAS and soon integrated into frameworks of CMS, ATLAS and soon LHCbLHCb
– Currently used for test productions in CMS
– Possibly with more effort than integration teams expected

•• POOL as a development team works well and would profit more fromPOOL as a development team works well and would profit more from
insuring stability than additional manpowerinsuring stability than additional manpower
– Some central positions inside POOL are more difficult to back up, but we

remained productive even through vacation periods overlapping with
experiment integrations

•• POOL operates close to its release planPOOL operates close to its release plan
– Following “release early, release often” strategy
– Many experiment requirements have been clarified and agreed only during

experiment integration phase rather than upfront
– POOL has been validated on LCG-1

•• POOL POOL WorkplanWorkplan for 2004 is currently being definedfor 2004 is currently being defined
– Validation of POOL for LCG-2 planned with V1,5

•• Many thanks toMany thanks to
– all developers working on the project for their commitment
– all experiment integration teams for their patience and very

constructive feedback!

