

LHCC Review November 2003

Grid Technology Area (GTA)

David Foster david.foster@cern.ch

pdate: 24/11/2003 07:42

David Foster - cern-it 1

Review Structure

Objectives

- To put the GTA in the context of the overall LCG project
- To explain the major issues facing the project in this area
- To indicate the future strategy for the GTA area

Agenda

- Introduction to the Grid Technologies
- GTA Achievements and Relationships
- Future Challenges
- EGEE

Some Fundamental Services

- Communication
 - Internet protocols: IP, DNS, routing, etc.
- Security: Grid Security Infrastructure (GSI)
 - Uniform authentication & authorization mechanisms in multiinstitutional setting
 - Public key technology, SSL, X.509, GSS-API and supporting infrastructure: Certificate Authorities, key management, etc.

The Local Resource Manager

- The Gatekeeper is the Globus Toolkit Implementation of the Grid Resource Allocation Mgmt (GRAM)
 - Remote allocation, reservation, monitoring, control of compute resources
 - Single point of entry Authenticates user, maps to local security environment, runs service
 - Job manager
 - A gatekeeper service, one instance per job
 - Layers on top of local resource management system (e.g., PBS, LSF, etc.)
 - Handles remote interaction with the job

Metacomputing Directory Service (MDS)

- Access information in a distributed directory
 - Directory stored in collection of LDAP servers
 - Each server optimized for particular function
- Directory can be updated by
 - Information providers and tools
 - Applications (i.e., users)
 - Backend tools which generate info on demand
- Information dynamically available to
 - Tools
 - Applications

MDS Structure

- Provide access to static and dynamic information regarding system components
 - Grid Resource Information Service (GRIS)
 - Supplies information about a specific resource
 - Mostly "white pages" lookups
 - Grid Index Information Service (GIIS)
 - Supplies collection of information which was gathered from multiple GRIS servers
 - Supports efficient queries against information which is spread across multiple GRIS servers
 - Mostly "yellow pages" lookups

- Replica Location Services (RLS)
 - Database for registering/locating:
 - Multiple copies of files
- Replica Management (RM)
 - Creating/Deleting/Maintaining Replicas
- GridFTP: Data Transfer and Access
 - Common protocol for data movement
 - Secure, efficient, reliable, flexible, extensible, etc.
 - Grid Forum (Internet) Draft
 - Family of tools supporting this protocol
 - Wu-ftpd, ncftp, Globus Toolkit SDKs, etc.

Projects and Technologies

- Globus provides the basic toolkit and infrastructure
- European Data Grid (EDG) provides higer level services
- Condor an implementation of a distributed batch system that can interface with Globus (Condor-G)
- VDT a bundling of Globus and Condor providing a number of different grid systems to be created.
- SRM Storage Resource Manager is a specification of a uniform interface to mass storage.
- Enabling Grids for E-science in Europe (EGEE) deployment project that will "productise" then deploy middleware.

Some I have not mentioned ...

Grid Systems

Compute Power Market

Grid Middleware (core services)

Cosm P2P Toolkit		• <u>Global Operating Systems</u>	
•Globus		• <u>XtremWeb</u>	
•Gridbus		 JAVELIN: Java-Based Global Computing 	
•Grid Datafarm		 MILAN: Metacomputing In Large Asynchronous Networks 	
•Storage Resource Broker (SPR)		 Harness Parallel Virtual Machine Project 	
• <u>CridSim: Toolkit for Crid Doceuroo Modeling and Schoduling Simultation</u>		 Management System for Heterogeneous Networks 	
•GIUSIII. TOOKILIOI GIU RESOULCE MODEIIIIg and	Scheduling Simulation	 PUNCH - Network Computing Hub 	
• <u>Simgna</u>		•MOBIDICK	
• <u>JXta Peer to Peer Network</u>		•MetaNEOS	Gria l'estbeas
•Legion: A Worldwide Virtual Computer		•Amica	
• <u>PUNCH</u>		•MultiCluster	•World Wide G
DataGrid Initiatives		•Poland Metacomputing	Polder Metaco
		•Echelon: Agent Based Grid Computing	 NASA Information
 Virtual Laboratory: Tools for Data Intensive Science on Grid 		•Bavanihan	 NPACI: Metas
• <u>EU DataGrid</u>		NeuroGrid	 Asia Pacific B
DIDC Data Grid work		GridLab	 The Distribute
 GriPhyN (Grid Physics Network) 			• <u>G-WAAT</u>
 HEPGrid (High Energy Physics and Grid Networks) 		• <u>DAMIEN</u>	 Micro Grid
Particle Physics Data Grid (PPDG)			 Alliance Grid
Datacentric Grid		• <u>DIE1</u>	•The Alliance \
•GridPP			 EuroGrid
	Grid Programmir	a Environments	 Internet Movie
Grid Schedulers	Charlogrammi		 Nordic Grid
	Nimrod A tool fo	or distributed parametric modeling	•ThaiGrid
 Nimrod/G Grid Resource Broker 	Ninf	i distributed parametric modeling	•TeraGrid
•AppleS			Irish Computa
•SILVER Metascheduler	MateMDL Flovib	le Coupling of Hotorogonous MDI Systems	•GrangeNet
•ST_ORM	•IVIELAIVIPI - FIEXID	Computing of Helefogenous MPT Systems	•LHC Grid
•Condor/G	• <u>Virtual Distributed</u>	Computing Environment	•L Grid
- <u>Condol/G</u>	•Grads: Grid App	lication Development Software Project	- <u>OurCrid</u>
- <u>NetSolive</u>	•Jave-based CoG Kit		- <u>OurGru</u> -Korolo Educat
Computing Contro Software (CCS)	•GAF3J - Grid App	•GAF3J - Grid Application Framework for Java	
• <u>Computing Centre Soltware (CCS)</u>	• <u>ProActive PDC</u>		-IN GILL KOTEA
	 REDISE - Remote and Distributed Software Engineering 		
	 Albatross: Wide A 	Area Cluster Computing	

Grid Testbeds and Developments

- •World Wide Grid (WWG)
- •Polder Metacomputer
- •NASA Information Power Grid (IPG)
- •NPACI: Metasystems
- •Asia Pacific Bioinformatics Network
- The Distributed ASCI Supercomputer (I
- •G-WAAT
- •Micro Grid
- •Alliance Grid Technologies
- •The Alliance Virtual Machine Room
- •EuroGrid
- Internet Movie Project
- Nordic Grid
- ThaiGrid
- TeraGrid
- Irish Computational Grid (ICG)
- GrangeNet
- •LHC Grid
- •I-Grid
- OurGrid
- Kerala Education Grid
- •N*Grid Korea

David Foster - cern-it-11

Grid Technology Area

- The structure of the LCG project has been well documented and discussed
 - <u>http://www.cern.ch/lcg</u>
- The GTA has its own web pages containing much information
 - <u>http://www.cern.ch/lcg/peb/gta</u>
- The GTA area went through a number of transitions
 - Until End 2002 was driven by the EDG project leader (Fabrizio Gagliardi).
 - From 2003 was driven by the current GTA manager (David Foster)
 - From April 2004 will be driven by the EGEE middleware manager (Frederic Hemmer)

- During 2002
 - Solely the EDG Project Leader
- To May 2003
 - Solely the current GTA Manager
- From May 2003
 - 1 FTE was added (Massimo Lamanna) to work on GTA issues in general.
- From June 2003
 - 1 FTE was added (Kathrin Paschen) to work on emerging modeling problems.
- In July 2003 the OGSA Engineering team was established under the GTA
 - Rotating people from Moscow State University, Dubna and the Academia Sinica Taipei contributed plus one student from the EDG.

The GTA has been only a small area within the overall project in terms of staffing

- LCG does not develop and therefore does not control the middleware technology evolution.
- But, within the project we do need to:
 - Identify the starting technologies (2003) to be deployed.
 - Identify the evolution strategy (2004-2006).
 - Identify the long term support strategies.
 - Work towards future middleware solutions that are coherent, acceptable and supportable.
- The GTA has worked on a number of well defined projects to enable the above objectives which will be described later
 - Technology Tracking
 - Technology Selection
 - Technology Evaluation
 - System Design

Technology Tracking

PASTA III

- During 2002 an updated report on "Processors, Architecture, Storage and Tapes" was created with the help of many external contributors.
- This was completed in February 2003 and used to create the new costing model for LCG Phase I and Phase II.
- An LCG Seminar on the results of PASTA III was held in 26 June 2003.

UK e-Science

 The UK e-Science core project was very active during 2003 and created a comprehensive review of grid technologies. A summary of this was created which was used as an LCG milestone.

Technology Selection

- GDB/WG1
 - Grid Deployment Board mandated a number working groups in November 2002. The Working groups completed their reports in January 2003.
 - The GTA took a leading role in the WG1 which was the technology selection for LCG-1. In particular it recommended:
 - A base supported level of VDT to be used.
 - A number of EDG components in the first release with others as they become ready.
 - That the issue of generalised grid file access to be studied.
- GFAL
 - The GDB recognised the file access problem and mandated a solution to be designed. The GTA completed this work in April 2003.
 - The GTA managed the implementation of the first prototype (May 2003) with manpower from the GDA.
 - The GFAL solution is to be in full production by the end of 2003.

Technology Evolution

- OGSA Engineering team
 - The GTA proposed to the LHCC referees in June 2003 that a serious effort be started to study the viability of the OGSA proposals and the Globus Toolkit 3 release in particular.
 - A team was put together in July 2003 with manpower from the GTA, EDG, MSU, Dubna and the Academia Sinica in Taipei.
 - The intention was to:
 - Report quickly (after 2 months)
 - Create an understanding of:
 - The effectiveness of GT3
 - The problems in creating new services
 - The opportunity to adapt existing software (AliEn)

Technology Evolution

OGSA Engineering team

- Many interesting results on performance and scalability issues were created and documented. (See GTA web pages)
- The results were presented in an LCG seminar 24 Sep 2003.
- The work was extremely well received by the Globus community and has resulted in a new and productive relationship.
 - Globus has changed some priorities based on our work (GRAM)
- The EGEE middleware activity has supported the work and its continuation as a valuable pre-cursor to the starting of the EGEE project.
- It will be a valuable resource for the emerging ARDA implementation.

- Modeling
 - Very limited due to little manpower. Need to concentrate on specific small parts of the bigger problem.
 - Identified general issues at three different levels
 - 1. Experiment Data Models
 - 2. Middleware architecture and scalability
 - 3. Fabric solutions
 - Spent much time in understanding the modeling tools and their limitations.
 - Currently working with the Monarc tools to understand the scalability issues in the new GT3 information system architecture and the RLS file catalog.
- RTAGs
 - The GTA was a contributor to a number of RTAGs but more specifically HEPCAL II and ARDA

Middleware Relationships

- Globus
 - Enhanced relationship through the OGSA engineering activity based on joint problem solving and testing.
 - Much confidence building done
- VDT
 - Recent meetings held in Wisconsin and CERN to understand the role of VDT in future systems (e.g ARDA).
 - Much synergy and opportunity to combine the best of different developments.
- UK eScience
 - Tracking the activities of the "Core" e-science developments as part of the Software Engineering Advisory Group (SEAG).
 - Intention is to develop robust and "production" middleware.
- IBM
 - Evaluating the GT3 offering as part of the OGSA engineering effort.

- The EGEE is a deployment project with a substantial middleware re-engineering activity to address the issues of the current middleware software.
- Decision was taken to combine the GTA and the EGEE middleware activity
 - Much mutual dependence and synergy of the two projects
 - Multiple middleware activities creates confusion
 - EGEE will have considerable manpower for technology developments
- But there are issues that will need working out as we go along
 - Does the world wide focus of the LCG and the European focus of the EGEE mix?
 - Will there be conflicts of priorities?
 - Can the technology of a long term project (LCG) come from a short term project (EGEE) and how will it be supported?
- There is cross representation of the EGEE and LCG projects through the respective management and execution boards.

Where we are

- We have seen that progress is being made, but slowly
 - The current middleware is not what we would have hoped but was the best available to be deployed at the beginning of this year.
 - Many complex problems remain in the grid technology area
 - Not much experience of the reliability of "grid systems".
 - Scalability is still an issue.
 - Manageability is still an issue.
 - In our problem domain many issues still exist
 - Configuration management.
 - Security and VO management.
 - Data management.
 - Much experience yet to be gained
 - Job throughput and splitting.
 - Efficient scheduling and matching.
 - Chaotic workloads.
- Many others too ... seems clear we are at the very beginning of a very long process of technology development and evolution.
 - Concentrate on understanding and solving the basic problems by deploying a simple, but production, system based on the LCG-1 and LCG-2 technologies.

Networking

- Effective use of underlying network infrastructures still need much further work.
 - New EU proposals address some issues of middleware interaction (GRANDE).
 - New projects (*light) aim to create high speed (10Gbit) network infrastructures.
 - New protocol stack implementations required to exploit WAN of high latency.
 - Moving us towards an underlying circuit switched special purpose network in addition to a general purpose packet switch network.
- Tier 0/1/2/3 expected relationships and computing models will modify the networking requirements. These are starting to be debated.

Medium term opportunities

- **2003**
 - Until now we have envisaged complex schemes and functionality.
 - Existing middleware is generally overly complex and under developed.
 - Politics and Marketing is both providing <u>and consuming</u> tremendous effort.
- **2004**
 - LCG-1 and LCG-2 production services will continue to be developed and reach a level of operational stability.
 - A service based approach (ARDA) will be <u>developed in parallel</u> but <u>will need to be proven</u> as a strategic direction.
 - Milestones in March, June and October?
 - Industry activity likely to grow slowly
 - Relationship of LCG/EGEE to US HEP activities critical to overall success
 - Leverage the best technologies emerging in the coming years within the service based model.
- **2005**
 - We need to be cleaning up the details of the LHC computing solution.

Conclusions

- Existing plans and planning assume a deterministic path to success but grid technologies are far from this at present...
 - Understanding of both requirements and technology is evolving
- Main middleware risks are lack of delivery of an effective middleware package due to:
 - Over ambition, complexity and too short timescales
 - "Mythical Man Month" problems.
 - Inertia generated through complex dependencies between projects.
- Managing complexity is the major challenge
 - LCG-1 and LCG-2 will improve to address the main basic functionality.
 - MSS to MSS copy across the wide area.
 - Local data access from worker nodes.
 - Simple job submission and control.
 - Excellent configuration management and deployment tools
 - Realistic requirements needed through the GAG and HEPCAL-II like activities.
 - ARDA will prepare the "next generation" middleware in parallel by leveraging existing technologies and the basic functionality required.
- We look forward to EGEE using its resources to move to the next phase in the LHC grid system (Analysis) but we have not yet mastered the existing phase (Production) fully.
 - We all (LCG, EGEE and the experiments) will need to put effort into building up a series of realistic analysis challenges.

