
http://lcgapp.cern.ch/project/pi/

ππ
A technical overviewA technical overview

Lorenzo Moneta Lorenzo Moneta

CERN/EP-SFT

Application Area Review, 20Application Area Review, 20--22 Oct 200322 Oct 2003

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN2

OutlineOutline

PI Analysis Services:
AIDA interfaces
PI extension to AIDA: Proxy layer with value semantics
ROOT Implementation of AIDA Histogram interfaces
Interface to I/O: Root and XML
Histogram converter AIDA-ROOT

Latest release 1.0.0:
QA : unit and performance tests

Integration with external applications:
Prototype of Python binding to AIDA
Interface with ROOT (using PyROOT) and HippoDraw

User feedback
Summary

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN3

AIDA AIDA

AIDA - Abstract Interfaces for Data Analysis

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN4

AIDA InterfacesAIDA Interfaces

Version 3.0 since Oct. 2002
User level interfaces to analysis objects (histograms, ..), plotter and fitter
Expose pointers to objects with factories
Management and storage using Tree interface
XML protocol for data exchange

Missing
Separation between Factories and Tree
– adopt a different management schema

Simplified value-semantic layer with constructors and operators
– Hiding of factories to end-user

Developer interface to ease building generic manipulators and tools
– Independent analysis components

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN5

AIDA Proxy layerAIDA Proxy layer

Extension of AIDA interface:
A layer on top of AIDA interfaces with value
semantics
C++ proxy classes to AIDA interfaces
– Implemented using the “Proxy” pattern

Based only on AIDA Interfaces with no
dependency on a given implementation

Has

AIDA
IHistogram1D

Histogram1D
Histogram1D

implementation<<proxy>>

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN6

Advantages of AIDA ProxyAdvantages of AIDA Proxy

Value semantics easier for users
No pointers involved
User manages the objects (no magic)

Much simpler than using directly AIDA
No need to use factories to create an object

Example: creation of an Histogram:
AIDA:
IAnalysisFactory * af = create_AIDA_AnalysisFactory();
ITreeFactory * tf = createTreateFactory();
ITree * tree = tf->create();
IHistogramFactory * hf = af->createHistogramFactory(*tree);
IHistogram * h = hf->createHistogram1D(“myHisto”,100,0,10);

PI:
Histogram1D h(“myHisto”,100,0,10);

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN7

Features of AIDA Proxies classesFeatures of AIDA Proxies classes

Keeping the functionality and signatures of AIDA
“re-shuffling” of factory methods to object constructors

Proxy classes can expand functionality of AIDA
Additional features can be easily added on user requests

Hiding of AIDA object management
Easier the integration with experiment framework
AIDA tree is not exposed to users but hided in the Proxy implementation
Tree can be replaced in the future with SEAL whiteboard

Dynamic loading using SEAL plugin manager
load at run time the chosen implementation
– AIDA ROOT histograms or AIDA Native

load store library (Root based files or XML)

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN8

AIDA Proxy classesAIDA Proxy classes

Generated Proxies for all AIDA data objects
Histograms, Profiles, Clouds, DataPointSets, Tuples

Proxies exist also for Functions and Fitter
Plotter can be done later (if requested)

AIDA_ProxyManager class
Not exposed to users
Implemented using the Loki singleton
Use AIDA Tree to manage the objects
Load AIDA factories using SEAL plugin manager
– Implementations can be chosen by the user

No dependency on any AIDA implementation
– Only interfaces and SEAL plugin manager

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN9

AIDA Proxy classes (2)AIDA Proxy classes (2)

Proxy_Selector
Use to select default implementations of AIDA objects to be used by in
the application

Proxy_Store
Class for storing and retrieving objects from I/O
Requested by users for evaluation of interfaces
Simple interface
– Only open(), write(), retrieve() and close() methods

Copy objects from a AIDA memory Tree to a Tree mapped to a store
Support for XML and Root I/O

HistoProjector
Helper class for projections
Avoid using factories

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN10

Summary of AIDA_ProxySummary of AIDA_Proxy

All AIDA functionality is available (excluding ITree)

Easy to use
Hide factories from users

Value semantics
Implemented operator “+” and “=“
Conversion (with copy constructors and operator “=“) from AIDA interf.

Copy between implementations
AIDA native to Root and vice versa

Choose implementation at runtime
User can decide implementation when constructing the objects

Objects are managed by the user (not by AIDA Tree)
Easy integration with other frameworks

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN11

AIDA Developer interfacesAIDA Developer interfaces

Abstract interface layer extending AIDA
Allows interoperability between different implementations
De-couple AIDA implementation components

Preliminary interfaces exist in PI
to be discussed in AIDA team and converge on a common set

Store Histogram

Developer Interfaces

AIDA

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN12

AIDA ROOT ImplementationAIDA ROOT Implementation

AIDA Histograms implementation using ROOT
Default implementation used by Proxy layer
Support now for all histograms (1D, 2D and 3D) and profiles (1D and 2D)
Implemented as a wrapper around the root objects
Use AIDA developer interface layer

AIDA_RootConverter
For conversions from AIDA histograms to ROOT and vice versa
Based on AIDA developer interface

AIDA_RootStore
provide storing and retrieving of histograms and profiles using a root file

Use AIDA_RootConverter

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN13

AIDA implementation PlugAIDA implementation Plug--insins

Use SEAL plugin manager to load implementations of AIDA
interfaces
Plugins exist now in PI for :

Histograms:
– AIDA_ROOT histograms (default implementation)
– AIDA Native

Tuples, DataPointSets libraries
Functions and Fitting library (based on old Minuit or NagC)
AIDA Tree library
XML store library (based on expat)
Root store library

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN14

Present Status of PIPresent Status of PI

Latest release :
1.0.0 available on /afs release area containing:
– AIDA developer interfaces
– Proxy Layer
– Complete AIDA ROOT Histograms
– AIDA Tree implementation with interface to store
– ROOT and XML format stores
– ROOT AIDA Converters
– SEAL Plugins to AIDA implementations

Integration with CMS
Examples using AIDA Proxy from PI exist in ORCA

Started integration with LHCb
Integrate in Gaudi the ROOT Histogram implementation of PI

ATLAS will follow LHCb soon

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN15

QA in PIQA in PI

Documentation
Examples on how to use PI are available on the WEB since first PI
release
– http://lcgapp.cern.ch/project/pi/Examples/PI_0_4_1

Reference documentation obtained from Doxygen (thanks to SPI)

Tests
Extensive test suite (order of 1000) in CPP unit of AIDA histograms
– Test all functionality of interfaces
– Test I/O and copying between implementations
– Integrated in Oval and Qmtest
– Thanks to Hurng-Chun Lee

Unit tests exist also for the other components
– Plan to migrate them to Cpp unit

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN16

Performance TestsPerformance Tests

Mesure for Histograms (1D, 2D and 3D) and Profiles (1D
and 2D) in the

AIDA ROOT implementation
AIDA Native
ROOT

CPU time for booking and filling 106 events
Memory size occupied by the histograms
File size in I/O format

ROOT (compressed/uncompressed)
XML (compressed/uncompressed)

Results available on the Web
CPU, Memory, File Size

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN17

Possible Future evolutionPossible Future evolution

Integration with persistency services from POOL
Implement AIDA tuples using POOL collections

Fitting and Minimization
Develop interfaces for minimization
Pluggable minimization engine
Make an implementation using new C++ Minuit from SEAL

Integrate more with SEAL services
Use SEAL whiteboard

Work on Interoperability between components from
different implementations

Push in AIDA for developer interfaces
Plotter Integration
– Use OpenScientist and/or HippoDraw
– Integrate JAS plotter through Java JNI interface

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN18

Integration with External ToolsIntegration with External Tools

Use Python for a prototype integration in an interactive
environment
Integration of AIDA with ROOT (using PyROOT) and
HippoDraw

Use Python bindings to AIDA interfaces
Simple Python program to copy the AIDA histograms in ROOT or
HippoDraw compatible objects
use the Boost-Python interface to copy in and plot them in HippoDraw
Or use PyROOT to plot in a Root canvas

Demo:
Create AIDA histograms and plot them in Root canvas
Create AIDA clouds and plot them in HippoDraw

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN19

User feedbackUser feedback

Got a very positive feedback on AIDA (and PI)
AIDA Histograms are widely used through Gaudi in LHCb
and ATLAS
Received from users (LHCb and CMS)

Interest in clouds (unbinned histograms)
Request for more work towards interactivity (Python)
LHCb :
– Specific requests for AIDA ROOT histograms

CMS :
– Gravity bin histograms
– Online requirements on histograms
– Interest in an interface for Tuples

Use POOL collection ?
– Interest in fitting (replace NagC with new Minuit C++)

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN20

SummarySummary

Development on PI Analysis Services according to the
project plan is almost completed

A ROOT implementation (wrapper) for AIDA binned histograms
Value semantic layer for AIDA objects for end-users
I/O support in XML and Root
Started integration with experiments
– CMS provides examples to use AIDA Proxy
– LHCb is integrating AIDA ROOT in Gaudi

Review of AIDA completed
AIDA review document available (link)
Very positive feedback received from users (LHCb and CMS)
– Need have integration completed with experiment framework for more

user feedback

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN21

Histogram1D
namespace pi_aida {
class Histogram1D : public AIDA::IHistogram1D {

public:
// Constructor following the factory-create method

Histogram1D(std::string title,
int nBins, double xMin, double xMax);

// as an example the fill method:
bool fill (double x, double weight = 1.)

{ if (rep == 0) return 0;
else return rep->fill (x , weight); }

// other methods are also mostly inlined …
private:
AIDA::IHistogram1D * rep;

}; }

AIDA_ProxyAIDA_Proxy in more detailin more detail

Has

AIDA
IHistogram1D

Histogram1D
Histogram1D

implementation<<proxy>>

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN22

Example: Histogram1DExample: Histogram1D

// Creating a histogram

pi_aida::Histogram1D h1("Example histogram.", 50, 0, 50);

// Filling the histogram with random data

std::srand(0);

for (int i = 0; i < 1000; ++i)

h1.fill(50 * static_cast<double>(std::rand()) / RAND_MAX);

// Printing some statistical values of the histogram
std::cout << "Mean:" << h1.mean() << “ RMS:" << h1.rms() << std::endl;

// Printing the contents of the histogram
const AIDA::IAxis& xAxis = h1.axis();
for (int iBin = 0; iBin < xAxis.bins(); ++iBin)

std::cout << h1.binMean(iBin) << " "
<< h1.binEntries(iBin) << " "
<< h1.binHeight(iBin) << std::endl;

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN23

Example: Fitting a HistogramExample: Fitting a Histogram
// create and fill the histogram
//……….
// Creating the fitter (ChiSquare by default)
pi_aida::Fitter fitter; // or: fitter(“BinnedML“)
// Perform a Gaussian fit, use shortcut with strings
// fitter.fit(h1,function) to pass a user defined function
AIDA::IFitResult& fitResult = *(fitter.fit(h1, “G”));
// Print the fit results
std::cout << "Fit result : chi2 / ndf : " << fitResult.quality() << " / " <<

fitResult.ndf() << std::endl;
for (unsigned int i = 0; i < par.size(); ++i) {
std::cout << fitResult.fittedParameterNames()[i]

<< " = " << fitResult.fittedParameters()[i]
<< " +/- " << fitResult.errors()[i]
<< std::endl;

}

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN24

Example: Operations on HistogramsExample: Operations on Histograms

// Creating a histogram in the native AIDA implementation
pi_aida::Histogram1D h1("Example h1", 50, 0, 50, “AIDA_Histogram_Native”);
// fill h1
std::srand(0);
for (int i = 0; i < 1000; ++i)
h1.fill(50 * static_cast<double>(std::rand()) / RAND_MAX);

// Creating a histogram using Root implementation
pi_aida::Histogram1D h2("Example h2", 50, 0, 50, “AIDA_Histogram_Root”);

//Copying

h2 = h1;

//adding (default type is used when creating h3)

pi_aida::Histogram1D h3 = h1 + h2;

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN25

Example: Histogram ProjectionsExample: Histogram Projections

// Creating a 2D histogram
pi_aida::Histogram2D h("Example 2D hist.", 50, 0, 50, 50, 0, 50);

// Filling the histogram…..
…..
// projections
pi_aida::HistoProjector hp;
// project: created histogram is of default type
pi_aida::Histogram1D hX = hp.projectionX(h);
// project on a Root histogram
pi_aida::Histogram1D hY= hp.projectionY(h,0,50,”AIDA_Histogram_Root”);

Implement projections on Histograms ?
hX = h.projectionX()

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN26

Example: Store and Read HistogramsExample: Store and Read Histograms

// after created and filled the histograms
………

// create a ROOT Proxy_Store
pi_aida::Proxy_Store s1("hist.root","Root");
s1.write(h1);
s1.close();
// create a XML Proxy_Store
pi_aida::Proxy_Store s2("hist.xml",“XML");
s2.write(h1);
s2.close();

// read histogram from the Root store
Histogram1D h1 = s1.retrieve<Histogram1D> (“h1 name”);

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN27

CPU Time test resultsCPU Time test results

Time to book and fill an histogram with 106 events
Example: results for Histogram1D:
– ROOT: 0.75 s
– AIDA ROOT: 0.85 s
– AIDA Native: 1.11 s

Application Area Internal Review, 21 October 2003 Lorenzo Moneta, CERN28

Memory and File Size test resultsMemory and File Size test results

Size occupied for 106 equivalent bin histograms:
1000 Histogram1D with 100 bins
100 Histogram2D with 100x100 bins

