
SEAL
Framework &

Services
LCG AA Internal Review
20 October, 2003

Radovan Chytracek / CERN
on behalf of SEAL team

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
2

Motivation
Allow LCG developers and users to write portable and
modular code across all LCG projects

Provide developers with handy abstractions for modeling
software systems

Learn from mistakes in the past and come with software
component system which gets the best ideas which work
well in existing systems

There are simply too many to list here
– Too many parties and interests involved
– Very often controversial between two parties

Inspired by technologies in HEP and outside
– Gaudi, Iguana, J2EE, Qt, COM, .NET, Python

Basic requirements:
– KISS, flexible, type-safe, fast(if possible)

Features:
– contextual composition, type-safe lookup, abstract interface

support, plug-ins friendly

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
3

Requirements

Requirements (2)
Encourage well-known communication protocols
– call-backs, signals/slots,, observer-notification

Encourage simple services
– direct use, targeted interfaces
– configurable components via state/context

instead of a->b->c->d style of navigation
Aim at lightweight framework, simple, repeatable usage
pattern
– common wiring, not a lot imposed on experiment framework

Component model must fit needs of majority and must be
easily adopted by the rest

How we did it
Baseline taken from Iguana component system
– Re-design followed to make it independent

The design we agreed was first prototyped in Python
– Focus on functionality & component collaboration apects

2 quick independent C++ prototypes followed
– The first goal to achieve the Python prototype look-alike
– The second to achieve minimal amount of code needed to build and

use components in a C++ application
Internal review of the prototypes
– Benchmark, C++ implementations comparison, identifying

performance bottle-necks and points of inflexibility

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
6

Component Model
Designed as hierarchy of bases
classes to support the component
model
Each Component lives in a Context
Contexts form their own hierarchy
Support for component look-up
– If not in local context, look in

parent
A Service provides its own local
Context
– Components of a Service live in the

scope defined by its own Context
User classes inherit from
Component or Service
– Plug-in functionality for free

Component

Service

MyComponent MyService

Context

RefCounted

*

*

1

Component
Factory

Component
Loader

1

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
7

Context Hierarchy

Any Component may attempt to locate another Component
in the running application (collaboration network)
– By “type” or by “key”
– If the not found in the current context, the parent context is

searched recursively

Context
Application

C1C1 C1C2

Component

Svc2
C1C6 C1C7

Svc1
C1C3 C1C4

C1C5

Svc1

Service
C1C7

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
8

Component Model: How-To (1)

#include "SealKernel/Component.h“
class MyComponent : public seal::Component{
DECLARE_SEAL_COMPONENT;

public:
MyComponent (seal::Context* context);
MyComponent (seal::Context* context, const std::string & label);
// implicit copy constructor
// implicit assignment operator
// implicit destructor
//.....component member functions..
void doSomething();

};

MyComponent.h

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
9

Component Model: How-To (2)
#include "MyComponent.h“
#include <iostream>
DEFINE_SEAL_COMPONENT (MyComponent, "seal/example/MyComponent");
MyComponent::MyComponent (seal::Context* context)

: Component (context, classContextKey ()){}
MyComponent::MyComponent (seal::Context* context,

const std::string & label)
: Component (context, label){}

// member function implementations
void MyComponent::doSomething() {
std::cout << "MyComponent: Hello World ! " << std::endl;
}

#include "MyComponent.h“
#include "SealKernel/ComponentFactory.h“
#include "PluginManager/ModuleDef.h“
DEFINE_SEAL_MODULE ();
DEFINE_SEAL_PLUGIN (seal::ComponentFactory, MyComponent,

MyComponent::classContextLabel ());

MyComponent.cpp

Module.cpp

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
10

Component Model: How-To (3)

#include “SealKernel/ComponentLoader.h”
#include “MyComponent.h”

Handle<MyComponent> handle = component<MyComponent>();
handle->doSomething();

OtherComponent.cpp

#include “SealKernel/ComponentLoader.h”
#include “MyComponent.h”

Handle<MyComponent> handle = component<MyComponent>(
“seal/example/MyComponent2”
);

handle->doSomething();

OtherComponent1.cpp

Look-up by typeLook-up by type

Look-up by keyLook-up by key

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
11

Component Model: How-To (4)

class IFaceComponent : public IFace, public Component {
public:

DECLARE_SEAL_COMPONENT;
IFaceComponent(Context* c) : Component(c, IFaceComponent::classContextKey()) {}
IFaceComponent(Context* c, const ContextKey& key) : Component(c, key) {}
IFaceComponent(Context* c, const std::string& key) : Component(c, key) {}
virtual ~IFaceComponent() {}

public: // IFace implementation
virtual void ifaceCall(void);

};
DEFINE_SEAL_COMPONENT(IFaceComponent,"seal/example/IFaceComponent")
void IFaceComponent::ifaceCall(void) {

MessageStream optimist(this, "Optimistic");
optimist << "I live!" << flush;

}

IFaceComponent.cpp

#include "IFace.h"
int main()
{ Application theApp;

Handle<ComponentLoader> loader = theApp.context()->component<ComponentLoader>();
loader->load("seal/example/IFaceComponent");
IHandle<IFace> ifacehandle =

theApp.context()->query<IFace>("seal/example/IFaceComponent");
if(ifacehandle)

ifacehandle->ifaceCall();
return 0;}

Main.cpp

Using abstract interfaceUsing abstract interface

class IFace {
public: virtual void ifaceCall(void)=0;

virtual ~Iface(){}
};

IFace.h

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
12

Basic Framework Services
The first set of Basic Services came with the new
Component Model
Application
– Defines the top level Context
– Possibility to set the initial set of Components to be loaded in the

application
Message Service
– Message composition, filtering and reporting
– Closely related to MessageStream

Configuration Service
– Management of Component properties and loading configurations
– Multiple backends foreseen:

» Gaudi style options, .INI style, CMS style, XML, ...

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
13

Future development
New Services
– Whiteboard service

» Design started and discussed with the interested experiments
» Waiting for feedback from experiments
» Implementation plan similar to that of component model

– DictionaryService - loading of dictionary libraries on-demand
» Design and prototyping in progress

More ConfigurationService back-ends
Get feedback (from experiments + POOL+…) about
Component model and Framework services
– Corrections and re-designs are foreseen and possible

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
14

Summary
Component model & basic services came with SEAL 1.0.0
– Combining existing designs into a “common” one is not trivial
– Base classes to support the model provided
– First set of basic Framework services

Ready to be used (tested) by experiments frameworks,
however:
– POOL is waiting for the component model to stabilize
– LHCb may jump on it after POOL integration in Gaudi is O.K.
– CMS similar attitude as LHCb, going for minimalist approach
– ATLAS not there yet

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
15

Application
Establishes the “top” Context
– But, it can be inserted in an exiting Context

Instantiates a basic number of Components (or Services) useful to all
applications
– ComponentLoaded (interface to Plug-in manager)
– PropertyManager (application level configuration parameters)
– MessageService
– ConfigurationService
int main(int,char**) {

Application theApp;
//----Get Loader
Handle<ComponentLoader> loader = theApp.component<ComponentLoader>();
//----Instantiate the plug-in
loader->load("SEAL/Kernel/Test/Loadable");
//----Get a handle to it
Handle<Loadable> loadable = theApp.component<Loadable>();

}

main.cpp

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
16

Message Service
The user instantiates a MessageStream to compose
messages. It reports to the MessageService when message
is completed
MessageService dispatches and filters all messages of the
application

#include “SealKernel/MessageStream.h”

MessageStream info(this,”MyName”, MSG::INFO);
info << “Hello world” << flush;

MessageStream log(this, “OtherName”);
log(MSG::ERROR) << “This is an error” << flush;

OtherComponent.cpp

MyName INFO Hello World
OtherName ERROR This is an error output

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
17

Configuration Service
A Component may declare its own Properties
– Templated Property instances (any type with a stream operator<<)
– References to data members (any type with a stream operator<<)
– Possibility to associate “callback” update function
– Properties have a “name” (scoped) and a “description”

The PropertyCatalogue is the repository of all properties
of the application
– It is filled from the “configuration file” (Gaudi JobOptions format

currently)

struct callObj { operator()(const Propertybase&) {…} };
int m_int;
Property<double> m_double(“double”, 0.0,”descr”, callObj);
propertyManager()->declareProperty(“int”, m_int, 0, “descr”);
propertyManager()->declareProperty(m_double);

Component.cpp

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
18

Single Context Look-up object model

ContextKey

next 8a b c d e f g h
0 1 2 3 4 5 6 7

Top
Context

Child
Context 1

Child
Context 2

0
1
2
3
4
5
6
7

a
b
c
d
e
f
g
h

Mapping from labels to keys to objects

A
B
C
D
E
F
G
H

?

Handle Context::query(“key”) { return m_vec[ContextKey::m_keys[“key”]] }

0 1 2 3 4 5
F

0 1 2 3
D

0 1 2 3 4 5
A B

6 7

H

20 October 2003 SEAL Review - Framework & Services R. Chytracek/CERN
19

SEAL Team (credits)
Christian Arnault (Dictionary)
Radovan Chytracek (Foundation, Framework)
Jacek Generowicz (Scripting, Framework, Documentation)
Fred James (MathLibs)
Wim Lavrijsen (Scripting)
Massimo Marino (Foundation, Framework, Scripting)
Pere Mato (Framework, Dictionary, Scripting)
Lorenzo Moneta (Foundation, Framework)
Stefan Roiser (Dictionary)
RD Schaffer (Dictionary)
Lassi Tuura (Foundation, Framework, Infrastructure)
Matthias Winkler (MathLibs)
Zhen Xie (Dictionary)

