
LHC-SC2-XX-2003

LHC Grid Computing Project ARDA Report 1

LHC Comput ing  Gr id
Pro jec t

A R C H I T E C T U R A L  R O A D M A P

T O W A R D S  D I S T R I B U T E D  A N A L Y S I S

Abstract:

This document is the report of the LHC Computing Grid Project's Requirements and Technical
Assessment Group (RTAG) on an “Architectural Roadmap for Distributed Analysis” (ARDA).

Document identifier: LHC-SC2-xx-2003

Date: 31-Oct-2003

Authors: ALICE:
P. Buncic (CERN/IKF Frankfurt)
F. Rademakers (CERN)

ATLAS:
R. Jones (U.Lancaster)
R. Gardner (U.Chicago)

CMS:
L.A.T. Bauerdick (Fermilab), chair
L. Silvestris (INFN Bari)

LHCb:
P. Charpentier (CERN)
A. Tsaregorodtsev(IN2P3 Marseille)

LCG:
D. Foster (CERN)
T. Wenaus (BNL)

GAG:
F. Carminati (CERN)

Document status: v1.00



LHC Grid Computing Project ARDA Report 2



LHC Grid Computing Project ARDA Report 3

C O N T E N T S

1 INTRODUCTION....................................................................................................................................... 5

1.1 EXECUTIVE SUMMARY.................................................................................................................................. 5
1.1.1 General Recommendations.................................................................................................................. 5
1.1.2 Recommendations for an ARDA Prototype ........................................................................................ 6
1.1.3 Beyond the ARDA Prototype ............................................................................................................... 7

1.2 SC2 MANDATE TO THE ARDA RTAG.......................................................................................................... 8
1.3 RTAG ACTIVITIES......................................................................................................................................... 9

2 REQUIREMENTS FOR DISTRIBUTED ANALYSIS ON THE GRID .......................................... 10

3 SUMMARY OF GRID PROJECTS PRESENTED TO THIS RTAG .............................................. 12

3.1 PROOF: PARALLEL ROOT FACILITY........................................................................................................ 12
3.1.1 System Architecture ........................................................................................................................... 12
3.1.2 PROOF and the Grid......................................................................................................................... 12

3.2 ALIEN: ALICE ANALYSIS ENVIRONMENT ............................................................................................... 13
3.2.1 Scope and expected deliverables....................................................................................................... 13
3.2.2 Technologies used.............................................................................................................................. 13
3.2.3 System Architecture ........................................................................................................................... 14
3.2.4 Supported analysis models ................................................................................................................ 15
3.2.5 State of deliverables........................................................................................................................... 15

3.3 CLARENS................................................................................................................................................... 16
3.3.1 Supported analysis model.................................................................................................................. 16
3.3.2 Technologies used.............................................................................................................................. 16
3.3.3 Scope and expected deliverables....................................................................................................... 16
3.3.4 State of deliverables........................................................................................................................... 17

3.4 DIAL: DISTRIBUTED INTERACTIVE ANALYSIS OF LARGE DATASETS ....................................................... 17
3.5 GANGA: GAUDI/ATHENA AND GRID ALLIANCE ...................................................................................... 17
3.6 DIRAC: DISTRIBUTED INFRASTRUCTURE WITH REMOTE AGENT CONTROL............................................ 18

4 THE ARDA BLUEPRINT....................................................................................................................... 20

4.1 ELEMENTS OF THE COMMON GRID ENVIRONMENT.................................................................................... 20
4.1.1 Service Access Protocols................................................................................................................... 20
4.1.2 Security Infrastructure....................................................................................................................... 20
4.1.3 Resource and task description........................................................................................................... 20

4.2 DESCRIPTION OF ARDA SERVICES............................................................................................................. 20
4.2.1 API – Accessing ARDA Services ....................................................................................................... 22
4.2.2 Grid Access Service ........................................................................................................................... 24
4.2.3 Information Service ........................................................................................................................... 24
4.2.4 Authentication Service....................................................................................................................... 24
4.2.5 Authorisation Service ........................................................................................................................ 24
4.2.6 Auditing Service................................................................................................................................. 26
4.2.7 Accounting Service ............................................................................................................................ 26
4.2.8 Workload Management Service ........................................................................................................ 26
4.2.9 Job Provenance Service .................................................................................................................... 26
4.2.10 File Catalogue Service ...................................................................................................................... 26
4.2.11 Metadata Catalogue Service ............................................................................................................. 26
4.2.12 Data Management Service ................................................................................................................ 26
4.2.13 Site Gatekeeper .................................................................................................................................. 26
4.2.14 Storage Element................................................................................................................................. 27
4.2.15 Computing Element ........................................................................................................................... 27
4.2.16 Job Monitoring Service ..................................................................................................................... 27
4.2.17 Package Manager Service................................................................................................................. 27
4.2.18 Grid Monitoring Service.................................................................................................................... 28

5 THE ARDA PROTOTYPE ..................................................................................................................... 29

5.1 EXTENDING ARDA SERVICES .................................................................................................................... 30



LHC Grid Computing Project ARDA Report 4

6 REFERENCES.......................................................................................................................................... 31



LHC Grid Computing Project ARDA Report 5

1 INTRODUCTION

This document is the report of the LHC Computing Grid Project's Requirements and Technical
Assessment Group (RTAG) on an “Architectural Roadmap for Distributed Analysis” (ARDA).

For this roadmap we recommend a series of waypoints. This document represents the first of these,
namely the findings and recommendations of the ARDA RTAG. The RTAG reviewed existing
projects with the aim to capture their architecture in a consistent way, confronting them with the
Hepcal-II use cases[1], in order to come to an initial blueprint of an architecture for distributed
analysis at the LHC. Following the guidance of the mandate given by the SC2, ARDA defines this
architecture in terms of a set of collaborating Grid services with well-defined interfaces. We propose
as the next step to build a prototype of the ARDA architecture.

1.1 EXECUTIVE SUMMARY

The Hepcal-II document [1] describes a set of use cases for analysis as an iterative sequence of user
interactions. In general these consist of a series of steps, starting with a setup stage, where the user
authenticates to the system, which in turn creates the analysis context and ensures the correct
installation of software packages, formulation of input and algorithm, where the datasets are selected
through metadata queries and algorithms are specified, execution of selection and algorithms, while
the user can monitor progress and eventually look at intermediate results, and finally gathering the
results, passing resulting datasets back to the session context where they are stored and can be
published and shared.

This model requires persistency of the analysis workspace associated with a given analysis task, that a
user can later re-connect to, re-submit the analysis with modified parameters or code, check the status,
merge results between analyses, share datasets with other users and analysis workspaces, while the
system keeps provenance information about jobs and datasets.

The ARDA RTAG reviewed existing projects, aiming to capture their architecture in a consistent way,
confronting them with these use cases where possible. Several of these projects address distributed
analysis by providing a set of web services or intelligent agents that communicate through a well-
defined protocol. ARDA adopted that approach and studied a decomposition of the distributed analysis
system into a set of services that would implement the major use cases and provide the basic required
functionality for distributed physics analysis. We found that of the projects surveyed AliEn [2] had the
most complete distributed analysis functionality, implemented through a set of web services. It
addressed a large part of the aforementioned use cases and had a substantial history of successful use.

The next step for the RTAG was to derive a decomposition of the distributed analysis environment
into a web services description, and to define their functions and interfaces. For this the RTAG started
from the AliEn web services, re-factoring and synthesizing with the input gained from the other
projects examined. The proposed domain decomposition into the ARDA set of services is described in
this document.

The RTAG then went back to the other Grid projects related to distributed analysis, to study how these
fit into the ARDA decomposition and what other and possibly complementary services are provided
addressing distributed analysis functionality.

As a result, the RTAG defines the ARDA architecture as a set of services, with specific behavior and
interfaces. Proceeding the way described allowed the RTAG to base its recommendations on an
analysis and synthesis of several projects, with at least one existing implementation. The resulting
ARDA blueprint is presented in this document.

1.1.1 General Recommendations

We recommend that the ARDA architecture should be implemented as an OGSI [3] compliant set of
services that implement the distributed analysis functionality. Being OGSI compliant, the ARDA
services would inherit industry-standard services architecture and a common set of functionalities, like
communication protocols, lifetime support, service compositions, etc. We also recommend that a



LHC Grid Computing Project ARDA Report 6

prototype of such a system be developed and deployed rapidly, to allow users to gain experience with
it and to provide feedback on functionality and interfaces.

We do however note that any implementation of OGSI, including the Globus Toolkit version 3 (GT3)
[4] is new technology, whose reliability, resilience and performance is not proven and needs to be
studied in at-scale environments. We recommend that the LCG address this upfront, using modeling,
performance studies in test environments, by developing a plan for scaling up to LHC workloads, and
by engineering of the underlying services infrastructure.

The ARDA services should present an Grid Access Service Factory and Application Programming
Interfaces (GAS/API) to enable applications, analysis shells, experiment frameworks etc to interface to
the distributed analysis services through a well defined API, with bindings to a required set of
programming languages. Instantiating the ARDA GAS/API service would provide a session context
that handles the user authentication, state, etc. The API allows to interface the experiment's
frameworks and analysis shells, and to build web portals and other user interfaces to the distributed
analysis environment through a well-defined common interface.

The API should provide methods for file access, submission and following up of the jobs, , meta-data
access, file catalog access etc. Higher level analysis services can be implemented on top of the ARDA
layer, either by going through the GAS/API or by communicating directly with the ARDA services.

We recommend a common API to the distributed Grid environment for analysis, shared by all LHC
experiments. This would be a vehicle for developing common functionality between experiments, and
at the same time allow development and integration of experiment specific services. For example,
while it is anticipated that the interactions on event-level metadata will be quite different for different
experiments, it is expected that this could be encapsulated in the interactions between experiment
specific metadata catalog service and common file catalog service. The OGSI specification adopts a
web service component model to address such issues.

In order to implement the distributed analysis use cases, some of the ARDA services will be statefull
and persistent. We recommend that an initial implementation should provide this through a database
backend.

1.1.2 Recommendations for an ARDA Prototype

As a next waypoint on the ARDA roadmap we recommend to develop and deploy an initial prototype
of the ARDA architecture, with the main goal to provide a more complete blueprint and to develop the
specifications for functionality and interfaces of the ARDA services and API.

The ARDA prototype would allow the investigation of the LHC requirements for distributed analysis
further. We recognize the value of real prototyping of services, their functions and interfaces,
providing insights how the services implement the required functionality for distributed analysis. The
prototype will allow the realistic investigation of the possible commonality between the experiments
in the API, which is ultimately necessary for the LHC experiments to run their competitive physics
research on top of a shared multi-VO environment.

It has been pointed out that there is no “evolutionary” path from the current GT2-based[5] LCG
infrastructure, building upon the VDT[6] and EDG[7] components and software stack, to a Grid
services architecture based on OGSI compliant services model. The prototype addresses this as it
enables one to perform real-world OGSI modeling, functionality and performance tests and to address
the issue of how to deploy and run ARDA services along with the existing ones on the LCG-1
resources. There are several areas where the ARDA services would leverage the emerging experience
with running a large distributed environment and exploit the R&D in the Grid middleware projects,
e.g. in the area of VO management, security infrastructure, set-up of the Computing and Storage
Elements and interfacing to the fabrics etc.

We recommend that the LCG setup a project to develop the prototype, considering these main goals.
The schedule and milestones should be commensurate with the need to expose the resulting
functionality and interfaces early to the community, and be on a timescale of 6 months.



LHC Grid Computing Project ARDA Report 7

Grid services descriptions and Grid services instances should be defined early in the project. This
should include descriptions and specification of core ARDA services, the definition of the external
interfaces, that is, the API to experiment frameworks, services and tools, and the interfaces to
infrastructure, facilities and fabrics. It is here where experiment developers and other Grid efforts
should be engaged from the beginning, and an initial release of the ARDA prototype should be made
available to the experiments and the Grid community. The internal interfaces between services should
be defined and documented with the end of the prototyping phase of about 6 months. Specific points
of interactions with the community should be provided, through early releases, workshops, and
actively seeking feedback on API, service interfaces and functionalities.

We recommend that the ARDA prototype project start with a careful definition of the work areas. The
constituency of the project and the project lead should be identified quickly, so that a team can be
built. The project should develop and present the work plan, schedule and milestones, including a plan
for interfacing to and engaging of LHC experiments and the LHC-related Grid community.

We propose a four-prong approach towards these goals:

1) Re-factoring of AliEn and possibly other services into ARDA, with a first release based on
OGSI::Lite[8]; consolidation of the API working with the experiments and the LCG-AA;
initial release of a fully functional prototype. Subsequently implementation of agreed
interfaces, testing and release of the prototype implementation.

2) Modeling of an OGSI-based services infrastructure, performance tests and quality assurance
of the prototype implementation

3) Interfacing to LCG-AA software like POOL and ROOT

4) Interfacing to experiment's frameworks, with specific meta-data handlers and experiment
specific services

The LCG Application Area, the LCG Grid Technology Area, and the EGEE[9] middleware team
should be involved in the ARDA. We recommend the experiments be involved from the beginning by
working on the interface with the frameworks and integrating into the experiment's data and metadata
management environments. Other LHC-related projects should be engaged by exposing services and
GAS/API definitions early to allow synergistic developments from these projects. It is important that
the appropriate emphasis and effort is being put on documentation, packaging, releases, deployment
and support issues.

1.1.3 Beyond the ARDA Prototype

After the prototype phase, we expect a period of scaling-up and re-engineering the OGSI foundation,
the database, the information services etc.; deployment and interfaces to site and Grid operations, VO
management, information services infrastructure etc.; building higher level services and experiment
specific functionality; work on interactive analysis interfaces and new functionalities.

The list of ARDA services discussed in this document is by no means complete. It is likely that a fully
functional system will require additional services, for example management of virtual data, handling
of experiment specific services tied to persistency and event access models, specific VO policy
services or high level optimization and supervision services.

The ARDA blueprint offers the basic functionality required to fulfill the common needs of the LHC
experiments, while allowing building upon the basic services described in this document. This
approach provides opportunity for well-aligned further developments and the inclusion of new and
advanced functionalities.

The rest of the document is structured as follows:

Section 2 gives a high-level view on the requirements for distributed analysis on the Grid, as extracted
from HEPCAL-II. We then provide summary descriptions of some of the projects developed for the
distributed analysis in different experiments in Section 3. In Sections 4 and 5 we give a description of
the ARDA blueprint and the scope and proposed functionality of an ARDA prototype.



LHC Grid Computing Project ARDA Report 8

1.2 SC2 MANDATE TO THE ARDA RTAG

Observation:

Different LHC experiments have developed packages (AliEn, Ganga, Dirac, Impala, Boss, Grappa,
Magda…) that either sit on top, complement, expand or parallel the functionality of the Grid
middleware (VDT, EDG…). At this time the LCG is coming to grips with the middleware
development requirements. There is an expectation that OGSA Services Architecture will be the basis
for future development. The Experiments need to specify in their TDR’s, baselines, fallback and
development strategies.

Motivation:

• To agree on requirements as laid out in a first step by recent work within the GAG and identify
commonalities within the current projects that might allow the LCG (both in the AA and GTA
areas) to provide a focus of effort.

• To provide guidance to the LCG on future Middleware development directions and interfacing
work to match the experiment requirements

• To build on the richness of the current technical solutions to avoid duplication of efforts

• To clearly identify the roles and responsibilities of the components/layers/ services in the
experiment DA planning

• To give guidance to the community on the expected division of work between the experiments, the
LCG and the external projects.

Mandate:

• To review the current Distributed Analysis (DA) activities and to capture their architectures in a
consistent way  

• To confront these existing projects to the HEPCAL II use cases and the user's potential work
environments in order to explore potential shortcomings  

• To consider the interfaces between Grid, LCG and experiment-specific services

o  Review the functionality of experiment-specific packages, state of advancement and role
in the experiment

o Identify similar functionalities in the different packages

o  Identify functionalities and components that could be integrated in the generic Grid
middleware

• To confront the current projects with critical Grid areas

To develop a roadmap specifying wherever possible the architecture, the components and potential
sources of deliverables to guide the medium term (2 year) work of the LCG and the DA planning in
the experiments

Schedule

The RTAG shall provide a draft report to the SC2 by September 12. It should contain initial guidance
to the LCG and the experiments to inform the September LHCC manpower review, in particular on
the expected responsibilities of

• The experiment projects

• The LCG (Development and interfacing work rather than coordination work)

• The external projects

The final RTAG report is expected for October 03, 2003.

Makeup

The RTAG shall be composed of

• Two members from each experiment



LHC Grid Computing Project ARDA Report 9

• Representatives of the LCG GTA and AA

If not included above, the RTAG shall co-opt or invite representatives from the major Distributed
Analysis projects and non-LHC running experiments with DA experience.

1.3 RTAG ACTIVITIES

The ARDA RTAG has held meetings about once a week from July to October 2003. The RTAG
program started with initial presentations from the following projects related to distributed analysis:
PROOF[16], AliEn[2], DIAL[10], Clarens[11], GANGA[12], DIRAC[13] and a two-days workshop
in September, leading to the initial presentation to the SC2 on September 12, 2003[14].

After that, members of ARDA had extensive discussions with their experiments and the LCG, and got
feedback on the initial report.

A verbal final report was given to the SC2 on October 3, 2003[15].



LHC Grid Computing Project ARDA Report 10

2 REQUIREMENTS FOR DISTRIBUTED ANALYSIS ON THE GRID

The LCG Grid Applications Group undertook a detailed review of the distributed analysis
requirements recently [1]. In the following we give a brief summary of the analysis activity that must
be supported by the functionality of the eventual Grid system. A high level scenario of the analysis
activity can be summarized as the following.

A user or a group of users have a (set of) algorithm(s) that they want to apply to a particular selection
of input data in a given execution environment. The input data are selected via a query to a Metadata
Catalogue. The selection and the algorithms are passed to a Workload Management system together
with the specification of the execution environment. The algorithms are executed on one or many
worker nodes of a Computing Element. During this execution, they need to access physical data
datasets (DS) usually on a local Storage Element, using a DatasetCatalog. The user monitors the
progress of the job execution. The results are gathered together and passed back to the owner of the
job. The resulting datasets are stored and can be published in order to be accessible for other users.

The above scenario represents the analysis activity from the user perspective. However, some
other actions are done behind the scene of the user interface:

• To carry out the analysis tasks users are accessing shared computing resources. To do so, they
must be registered with their Virtual Organization (VO), authenticated and their actions must
be authorized according to their roles within the VO; the consumption of the computing
resources by the users is accounted for;

• The user specifies the necessary execution environment (software packages, databases, system
requirements, etc) and the system insures it on the execution node. In particular, the necessary
environment can be installed according to the needs of a particular job;

The execution of the user job may trigger some Data Management actions such as transfers of files or
datasets between a user interface computer, execution nodes and storage elements. These transfers are
meant to be transparent for the user.

In the above schematic description of a typical analysis sequence, it appears clear that the user
interacts with a certain number of loosely coupled components or services. These components are
highlighted in the text in bold. They can be roughly classified in the following categories:

• User Interface

It helps the user to prepare his or her job, submit it, monitor it and retrieve its results. The user
interface is typically the experiment framework, Web portal or a command line interface.

• Virtual Organisation Services

These services allow for authentication, authorization and accounting within a given set of
users (usually a collaboration)

• Data Management

o  Metadata information: allows users to query datasets based on various information
such as the type and origin of the data (data taking period, previous processings) etc.
Datasets are therein referred to by their unique identification tag without reference to
their physical location.

o Dataset catalog information: allows replication of datasets onto several sites. Multiple
instances of datasets at various sites as well as generic dataset information (file size,
technology…) may be kept as well. Logical names are usually associated to datasets
in order to facilitate naming, as dataset identification such as GUID are not practical.

o  Data Management tools: allows dataset replication, replica deletion, and more
generally any dataset manipulation based on the Dataset Catalog information.

• Workload Management

Principally dealing with the whole process from the job submission to the start of
execution on a worker node. In particular, it has to ensure that the system requirements



LHC Grid Computing Project ARDA Report 11

defined in the job description are met, that the necessary input datasets are accessible
from the selected worker node (possibly using the Data Management tools). It allows
the follow-up of the job until its completion as well as the replication of output
datasets depending on the job specification.

• Miscellaneous needs

For each dataset, some information might need to be kept that is not meant for being
queried when defining a dataset (e.g. identification of the worker node that produced
it, operating system, CPU time used…). This is referred to as Provenance of the
dataset.

It is useful to be able to have an overview of the status of available resources (e.g. number of available
nodes at each site, number of jobs pending, running…). This constitutes a means for Grid
Monitoring.



LHC Grid Computing Project ARDA Report 12

3 SUMMARY OF GRID PROJECTS PRESENTED TO THIS RTAG

3.1 PROOF: PARALLEL ROOT FACILITY

The Parallel ROOT Facility[16], PROOF, is an extension of the ROOT system [17] that allows
interactive and transparent analysis of very large sets of ROOT files in parallel on remote computer
clusters. The main design goals for the PROOF system are transparency, scalability and adaptability.
Transparency means that there should be as little difference as possible between a local ROOT based
analysis session and a remote parallel PROOF session, both being interactive and giving the same
results. Scalability means that the basic architecture should not put any implicit limitations on the
number of computers that can be used in parallel. Adaptability means that the system should be able to
adapt itself to variations in the remote environment, e.g. changing load on the cluster nodes, network
interruptions, etc.

Being an extension of the ROOT system, PROOF is designed to work on objects in ROOT data stores.
These objects can be individually keyed objects as well as TTree based object collections. By
logically grouping many ROOT files into a single object, very large data sets can be created. In a local
cluster environment these data files can be distributed over the disks of the cluster nodes or made
available via a NAS or SAN solution.

By employing Grid middleware, PROOF is extended from single clusters to a virtual global cluster. In
such an environment the processing may take longer (not interactive), but the user will still be
presented with a single result, like the processing was done locally.

3.1.1 System Architecture

PROOF consists of a three-tier architecture, the ROOT client session, the PROOF master server and
the PROOF slave servers. The user connects from his ROOT session to a master server on a remote
cluster and the master server in turn creates slave servers on all the nodes in the cluster. All the slave
servers process queries in parallel. Using a pull protocol the slave servers ask the master for work
packets, which allows the master to distribute customized packets for each slave server. Slower slaves
get smaller work packets than faster ones and faster ones process more packets. In this scheme the
parallel processing performance is a function of the duration of each small job, packet, and the
networking bandwidth and latency. Since the bandwidth and latency of a networked cluster are fixed
the main tuneable parameter in this scheme is the packet size. If the packet size is chosen too small the
parallelism will suffer due to the communication overhead caused by the many packets sent over the
network between the master and the slave servers. If the packet size is too large the effect of the
difference in performance of each node is not evened out sufficiently. This allows the PROOF system
to adapt itself to the performance and load on each individual cluster node and to optimise the job
execution time. Performance measurements show a very good scalability and efficiency.

3.1.2 PROOF and the Grid

To be able to build a global virtual PROOF cluster Grid services need to be used as described in this
document. The interfacing of PROOF to the Grid can be done at several levels. The following levels
have been identified:

• Interface to the Grid file catalogue allowing a user to select a data set based on tags or logical
file names (using wildcards etc).

• Interface to the Grid resource broker to find the best location(s), based on the data set, where
to run the query. This could trigger the replication of some missing files to a cluster (only
when the amount of data in the files is relatively small).

• Interface to the Grid job queue manager to start PROOF master and slave daemons on the
remote cluster. The ROOT client will then connect to these pre-started daemons to create a



LHC Grid Computing Project ARDA Report 13

full PROOF session. This will require the grid queuing system that supports interactive high
priority jobs.

The PROOF teams is currently working with the AliEn developers on a prototype that implements
these features, where the AliEn API is accessed via the abstract TGrid class from ROOT.

3.2 ALIEN: ALICE ANALYSIS ENVIRONMENT

3.2.1 Scope and expected deliverables

AliEn is a distributed production environment developed by ALICE that represents a self-contained
Grid-like system based on Web Services technology [18]. It is meant to satisfy the principal HEP use
cases (simulation, reconstruction and analysis) in a distributed and heterogeneous environment where
the data component plays an important role (large number of big, read only files containing one or
more physics events at various processing stages).

3.2.2 Technologies used

The system is built around Open Source components and uses standard protocols (SOAP) to
implement a distributed computing platform that is currently being used to produce and analyse Monte
Carlo data at over 30 sites. The near term goal is to make AliEn services compatible with the OGSI
model that has been proposed as a common foundation for future Grids.

DB Proxy

User Interface Factory

Auditing

DBD/RDBMSRegistry/Lookup/Config

V.O. directory

Authentication

Storage Element

Gatekeeper

Job Manager

Transfer Manager

File Transfer

Process Monitor

Transfer Broker

Job Broker

Job Optimizer

Transfer Optimizer

Catalogue Optimiser

User Interface Grid Monitoring

CE

1

1..n 1

1

0..n

1..n

1..n

1

1

1

1

1
1

1

1

1

0..n

0..n

0..n

0..n

0..n

1. lookup

2. authenticate

3. register

4. bind

API

Figure 1: This diagram shows currently implemented Web Services in the AliEn framework and their
interactions while executing a typical analysis use case.

The backbone of AliEn is a distributed relational database (currently, but not necessary, MySQL). The
users must present a valid Globus proxy certificate, RSA key or password to the Authentication
Service in order to receive a session token, which then can be used to gain access to the database via a
database Proxy Service. In this model, users own their partition of the database and the database
engine is used to impose strict access control, authorisation and eventually auditing.  Each user



LHC Grid Computing Project ARDA Report 14

belongs to a VO and can have multiple roles in the system. AliEn VO management and service
configuration management is based on a LDAP directory.

3.2.3 System Architecture

(…
)

D
B
I

D
B
DRDBMS

(MySQL)

LDAP

V.O
.

Packages
&

Com
m

ands

Perl Core

Perl M
odules

External
Libraries

File & M
etadata 

Catalogue

SO
A
P/X

M
L

CE

SE

Logger

Database 
Proxy

Authentication

RB

U
ser  Interface

A
D
B
I

Config
M

gr
Package

M
gr Web

Portal

U
ser 

A
pplication

A
PI (C/C++/

perl)
CLI

GUI

AliEn Core Components & services InterfacesExternal software

Low level High level 

FS

Figure 2: The building blocks of AliEn

The system is built around Open Source components that represent about 95% of the code. The core
AliEn components and services are implemented in the perl scripting language. A portion of the
database represents a File Catalogue, which associates a universal logical file name with physical file
name(s) for each dataset and provides transparent access to datasets independently of their physical
location. Besides regular files, the File Catalogue supports virtual files linked to job status and
provenance information (job id, stdout/stderr, job input and output files).

Logical files can be further annotated on a per-directory basis by tagging them with additional
attributes accessible via an extended File Catalogue interface, implementing a Metadata Catalogue.

A user submits a job to the Workload Management, which consist of Job Broker, Manager and
Optimizer services. Requirements on the job are expressed in JDL, based on Condor ClassAds[19],
and once all these requirements are satisfied on at least one of the Computing Elements, the job will be
reserved by that CE first reporting free capacity to the Job Broker. In AliEn, the Job Broker is
implemented using a simplified pull (as opposed to a traditional push) model. Optimizer services make
sure that job requirements are eventually satisfied, which may require triggering file replication or
even execution of other jobs. The AliEn CE has been interfaced to a number of batch systems (LSB,
PBS, BQS, SGE, Globus, Condor, etc). While running, a job is wrapped in another service (Process
Monitor) that allows the user to interact with it. Interactions with local services running on a site
happen via the Cluster Monitor service.

Upon job completion, the output files are stored at a near Storage Element, which can have interfaces
to various mass storage systems (CASTOR, HPSS, HSI, etc).

File replication and file transport is carried out under the control of Data Management Services (File
Transport, Transfer Manager, Transfer Broker, Catalogue Optimizer). These services work together in
a way that resembles the job execution model, providing a scheduled and reliable file transport service
that is can employ several transport protocols (bbftp, gridFtp).

The overall performance of the systems and services is being monitored using the MonALISA
framework [20], which is currently integrated in the system as a monitoring display, but ultimately
aims at active monitoring, simulation and cost evaluation functionalities.

In order to gain access to the Grid at the application level, AliEn provides an API. Besides the native
perl module that allows users to use, modify or extend the interface, AliEn provides a C and C++ API.
In particular, the C++ API is thread-safe and was used to implement a full-featured file system on top
of the AliEn File Catalogue. The AliEn File System (alienfs) integrates the AliEn file catalogue as a



LHC Grid Computing Project ARDA Report 15

new file system type into the Linux kernel using LUFS, a hybrid user space file system framework.
The AliEn framework is used for authentication; catalogue browsing, file registration and read/write
transfer operations.

3.2.4  Supported analysis models

AliEn has been integrated into the ROOT and PROOF frameworks and supports both asynchronous
(interactive batch) and synchronous (truely interactive) analysis models. The TAlien class, based on
the abstract TGrid class, implements the basic methods to connect and disconnect from the Grid
environment and to browse the virtual file catalogue. TAlien uses the AliEn API for accessing and
browsing the file catalogue. The TAlienFile class extends the ROOT TFile class and provides
additional file access protocols using the generic file access interface of the AliEn C++ API.

In the batch analysis model, jobs are split by a Job Optimizer taking into account data location and are
executed in parallel, as soon as required resources become available. ROOT result files can be merged
on demand.  Analysis jobs are configured, executed and made persistent on the Grid using a new
ROOT analysis class (TAlienAnalysis), which also provides the analysis framework and overall
steering of the analysis task.

The interactive analysis model with AliEn extends the PROOF functionality to a multi-site setup over
the wide area network. The PROOF client connects to a PROOF master server running on a AliEn
core service machine. PROOF daemons on remote sites are started dynamically using dedicated
queues in the site batch queue system. They are assigned on demand corresponding to the queried data
set. The PROOF master connects to PROOF daemons at distributed sites through an AliEn TCP
routing service. This enables connectivity and connection control to computing farms on private
networks. A dedicated PROOF Grid service opens TCP routes through a site multiplexer and
maintains the population of PROOF daemons corresponding to the computational needs of the user
community. Results are available on the fly using a client/server architecture. The user interface
remains compatible with the standard implementation of PROOF.

Figure 3: PROOF setup in the AliEn environment

3.2.5 State of deliverables

AliEn today is able to solve the ALICE simulation and reconstruction use cases, and tackles the
problem of distributed analysis on the Grid following both approaches of asynchronous and
synchronous analysis, making the distributed AliEn environment available to the ROOT prompt and
using PROOF functionality.

USER SESSIONUSER SESSION

PROXYPROXY
MUXMUX

SITE ASITE A

PROXYPROXY
MUXMUX

SITE BSITE B

PROXYPROXY
MUXMUX

SITE CSITE C

APIAPI

ALIENALIEN
PROXYPROXY

CONTROLLERCONTROLLER
++

PROOF SERVERPROOF SERVER



LHC Grid Computing Project ARDA Report 16

3.3 CLARENS

Clarens [11] is a web services layer with a strong emphasis on security and distributed management.
Clients and services provide the real analysis functionality. Existing services include secure file
access, an interface to the SDSC Storage Resource Broker[21], the POOL file catalog, VO
management, and proxy escrow. Clients include ROOT, Iguana, PDA and desktop versions of
JAS[26] and the WIRED event display[22], a web interface and a Python scripting client.

Figure 4: CAIGEE Architecture: interaction between different components

3.3.1 Supported analysis model

The CAIGEE system [23] uses Clarens as a middleware component. It is oriented towards a services
model of analysis, but with support of the classical Globus-type shell command execution model. i.e. a
single web services interface is exposed by mutually aware distributed servers.

3.3.2 Technologies used

For Clarens itself the Apache web server is used with extensions in Python to implement the actual
web service functionality. There is also a Java version of the server being developed using the Tomcat
servlet engine.

Authentication is based on PKI Grid certificates, including proxy certificates created by Globus,
VOMS or Clarens. The browser client uses client-side certificate authentication over SSL. Client-
server communication is through SOAP or XML-RPC, and clients do not require Globus to be
installed to contact servers.

3.3.3 Scope and expected deliverables

The scope of CAIGEE is to provide a working implementation of a system that allows the interactions
between components as shown in the Figure. Deliverables include the clients and server middleware to
make these interactions possible, including distribution and installation of the components.  More
information is found in reference [23].



LHC Grid Computing Project ARDA Report 17

3.3.4 State of deliverables

The existing services and clients are described in the previous section. Current services in
development include auditing (logging), server discovery and distributed file catalogs, metadata
catalog to complement the POOL virtual data catalog service, third party data transfer, and an CMS
ORCA/COBRA interactive remote analysis service. The University of Florida CMS group is using the
Java server to provide a Clarens service of their Sphinx virtual data system[24].

Planned services include resource planning and reservation, a Grid-wide execution service, access to
monitoring data provided by e.g. MonALISA[25].

3.4 DIAL: DISTRIBUTED INTERACTIVE ANALYSIS OF LARGE DATASETS

DIAL  [10] is a project to investigate HEP distributed interactive analysis. Its three primary goals are:
to demonstrate the feasibility of distributed analysis of large datasets; to set corresponding
requirements for Grid components and services; and to provide the ATLAS experiment with a useful
distributed analysis environment.  It has many of the aspects of a workflow project, and the
decomposition for interactive analysis also provides an effective solution for batch analysis.  Prototype
classes exist in C++ that have been tested with a distributed local batch system and a ROOT front-end
application; PROOF and JAS[26] are also being added as front-ends.

A typical analysis user identifies data of interest, defines an algorithm for reducing that data to a result
(typically a collection of analysis objects such as histograms and ntuples), uses the algorithm to
process the data and generate the result, and then manipulates these objects in an analysis framework
such as PAW, ROOT or JAS. DIAL concentrates on the step of processing the data to generate the
result.

The DIAL team is much too small to address these issues in isolation and so has been working in the
context of the PPDG Grid project[27]. A plan for integrating with GANGA has been outlined. The
DIAL team looks forward to working with ARDA.

Perhaps the most important requirement to arise from the DIAL project is the need for a high-level job
definition language (JDL) that enables users to frame their analysis requests and to access the
generated result. DIAL defines such a language in C++ and provides an XML representation of all of
the relevant objects. In the DIAL model, users interact with a “scheduler” and express their requests
and receive results using this language. DIAL provides a ROOT interface to provide access to those
users and has plans to provide a Python interface to allow access from GANGA and other Python-
based analysis frameworks. The DIAL JDL is flexible so that any back-end application may be
provided to process the data. At present DIAL supports PAW (the format of the existing data produced
in ATLAS reconstruction) and there are plans to support ROOT and ATHENA. Another very
important component of this JDL is the dataset used to specify the data to be processed.

DIAL has recently added a scheduler client and web service interface so that users can interact with a
remote server exchanging SOAP messages. Local schedulers based on fork, LSF, lsrun and Condor
are already available. The latter can also be used with Condor-G to provide (non-interactive) grid
access. This is a step along the planned path to deliver a grid service early next year.

DIAL proposed to define a common high-level JDL that could be shared by different experiments and
perhaps even outside of HEP. If successful, such a language would enable different experiments to
share high-level schedulers in the same way they share batch systems today. Interactive analysis places
very stringent requirements on such schedulers. According to DIAL, a common JDL might encourage
grid middleware developers to deliver a system meeting these requirements.

3.5  GANGA: GAUDI/ATHENA AND GRID ALLIANCE

GANGA is a high level Grid Job Submission Wizard being developed in common by LHCb and
ATLAS. Its aim is to help physicists to prepare, submit, monitor and retrieve jobs, including analysis
jobs. The job preparation consists in the following steps:

• Select workflow to be executed (from a workflow database and/or editing)



LHC Grid Computing Project ARDA Report 18

• Prepare the execution parameters (JobOptions for Gaudi/Athena jobs); these can come from
an options database and/or editing.

• Select datasets to be processed (using the Metadata catalog)

• Split the job into sub-jobs on user request in order to achieve parallel files processing

• Submit (sub-) jobs either for interactive execution, to a local batch system, to LCG or any
other workload management system (e.g. Dirac)

• Monitor the progress of the jobs (possibly examine output such as logfile, histogram…)

• Retrieve jobs after completion, possibly re-submit in case of a crash

• Merge output (text files, histograms, list of output Ntuple files)

Ganga is a set of Python modules, each one dedicated to one task, connected via a Python bus. Sets of
modules are of general use (job submission, monitoring, retrieval…), while others are dedicated to
interface to Gaudi/Athena jobs (JobOption editor) or experiment specific (Dataset selection). Other
front-end modules could be plugged-in (e.g. it has been exercised for Babar job submission, with
modest effort by a Babar worker customizing the GUI).

Ganga is by no means providing Grid resources, but is using them together with experiment or
framework services for helping users in painlessly interfacing to any computing infrastructure, from
laptop standalone environments to Grid based infrastructures. With Ganga, users are able to test their
software with exactly the same environment that will be used for analyzing large datasets.

3.6 DIRAC: DISTRIBUTED INFRASTRUCTURE WITH REMOTE AGENT CONTROL

DIRAC[13] is distributed MC Production system that fulfills the requirements for the simulation
and reconstruction of the LHCb experiment. It consists of a number of central services and clients
(Agents) running on each of the LHCb production sites. The central services include the following:

• Production Service is managing the job queue. It accepts jobs prepared with a web based
Production Editor. It gets requests for jobs from Agents, checks the capabilities of the
requesting site and serves the jobs accordingly;

• Job Monitoring Service collects and visualizes the job status information. The running jobs
report their status directly to this service;

• Bookkeeping Service receives the metadata and replica information for the published datasets,
stores it and serves it to its clients. It combines the functionality of a Metadata and File
Catalog, in the ARDA language.

Application 
packager

Application 
packager

Workflow
editor

Workflow
editor

Production 
editor

Production 
editor

Production manager

Production DBProduction DB

Production management

Edit
Instantiate
workflow

Create
application

tar file

Central 
Services

Monitoring
DB

Monitoring
DB

Bookkeeping
DB

Bookkeeping
DB

Production resources

Agent AAgent A
Site A

Agent nAgent n
Site n

…
Agent BAgent B

Site B

Mass Storage

Bookkeeping 
Service

Bookkeeping 
Service

Monitoring 
Service

Monitoring 
Service

Production 
Service

Production 
Service

Castor MSS
CERN

Castor MSS
CERN

Job 
monitor

Job 
monitor

Application 
packager

Application 
packager

Workflow
editor

Workflow
editor

Production 
editor

Production 
editor

Production manager

Production DBProduction DB

Production management

Edit
Instantiate
workflow

Create
application

tar file

Central 
Services

Monitoring
DB

Monitoring
DB

Bookkeeping
DB

Bookkeeping
DB

Production resources

Agent AAgent A
Site A

Agent nAgent n
Site n

…
Agent BAgent B

Site B

Mass Storage

Bookkeeping 
Service

Bookkeeping 
Service

Monitoring 
Service

Monitoring 
Service

Production 
Service

Production 
Service

Castor MSS
CERN

Castor MSS
CERN

Job 
monitor

Job 
monitor

Figure 5: The DIRAC architecture



LHC Grid Computing Project ARDA Report 19

Agents running at each of the production sites monitor the status of the local batch system. If there are
slots available, an Agent contacts the Production Services for the workload; gets a job and installs the
execution environment (software, databases) according to its requirements; submits the job to the local
batch system. The job is executed with the help of workflow executor scripts that steer the job and
updates the central Job Monitoring Service with the job progress status. After the job is executed, the
Agent insures the dataset transfers, updating the Bookkeeping Services with the metadata and replica
information for the newly produced datasets.

The DIRAC central services and Agents are implemented as XML-RPC servers and clients. The
Production, Monitoring and Bookkeeping databases are hosted by the Oracle server at CERN.

Production Service together with a set of distributed Agents form a powerful Workload Management
System which realizes the “pull” scheduling paradigm. Agents are also providing the functionality of
the computing resource gatekeeper (Computing Element) with back-ends for LSF, PBS, BQS, Condor
and fork available. The DIRAC Workload Management System is currently being updated to cope
with analysis tasks. At the same time a prototype OGSI compliant wrapping using the GT3 toolkit has
been developed.

It is planned that the next generation of the DIRAC system will be based on the grid services provided
in the framework of the ARDA prototype project. The DIRAC team intends to contribute its
implementation of ARDA compliant Workload Management and Metadata Catalog services while
acquiring other services from the ARDA development.



LHC Grid Computing Project ARDA Report 20

4 THE ARDA BLUEPRINT

As described and motivated in the introduction, the ARDA RTAG started from a careful analysis of
the necessary functionality to meet the requirements for distributed analysis, based on the AliEn
project that already has a substantial history of successful use. In the following we inspect the services
needed to implement this functionality, with the aim to derive general domain decomposition.
Confronting these services with other projects in corresponding domains and requiring that services
defined by ARDA should be genuine replaceable components, we define a set of new services that
must be added to the set of services derived from AliEn to complete the system. As a result of this
analysis, we present an architecture defined as a minimal complete set of collaborating services with
well-defined interfaces capable of satisfying the major LHC analysis use cases. We also indicate
approaches to how user applications (portals, client tools, experiment frameworks, services, etc.) could
be integrated to core services using ARDA Grid Service Components, such as a Grid Access Service
component.

4.1 ELEMENTS OF THE COMMON GRID ENVIRONMENT

In order to organize the set of Grid services in a coherent system we need a set of rules that will allow
different services to communicate with each other. The same rules adopted on the entire Grid level
will allow interoperability of services. Therefore, we consider the OGSI specification by the Global
Grid Forum[3] as the possible common ground for building ARDA services.

4.1.1 Service Access Protocols

The main protocol for communications between the services is that suggested by the OGSI
specification[3], which extends the Web Services Definition Language (WSDL) specification[28] to
incorporate stateful services, control management of long-lived process and collection of service
instances. OGSI defines a component model, which extends WSDL and XML Schema, and introduces
the factory and registration interfaces for discovery and creation of Grid services. WSDL includes a
binding for the SOAP 1.1 messaging protocol [29].

4.1.2 Security Infrastructure

A common Security Infrastructure is an important element, as almost all the services will have security
checks built in. So, the user and service credentials should be acceptable throughout the whole set of
services. The GSS-API based security infrastructure (based on Globus/GSI) [30] already adopted by
the VDT, EDG and LCG projects should be used to provide compatibility with existing services and
procedures.

4.1.3 Resource and task description

Another important condition of interoperability is that all resources that are available on the Grid, as
well as all tasks that need to be executed, advertise themselves using a common format or language. In
line with the choices made for the currently LCG Grid system, we recommend the use of Condor JDL
(Job Description Language)[19] and elements of the GLUE schema[31] for resource and VO
configuration and management.

4.2 DESCRIPTION OF ARDA SERVICES

The Open Grid Services Infrastructure offers a convenient model for starting instances of Grid
services on demand by means of the Service Factory interface (unlike bare Web Services currently
used in AliEn and other projects, where this functionality has to be implemented by the framework in
a non-standard way). The Service Factory interface allows for creation of a service port with
associated messaging protocol on a per user basis with an appropriately constructed User Interface that
reflects roles and capabilities of the authenticated user.  For example, VO administrators or production
users can have an extended interface, allowing them to do more advanced or higher priority tasks than
ordinary users can.



LHC Grid Computing Project ARDA Report 21

One must assure that there are commonly used Authorisation and Auditing Services and that all
communication between components goes via standard channels and agreed interfaces. This allows the
exchange of potentially VO-specific components like the Metadata or File Catalogues and allows a
VO to replace, on the basis of its needs and preferences, default component with the one provided by
experiment, that is adhering to the agreed interface.

This means that File and Metadata Catalogues must appear in the architecture as independent services.
Similarly, a Package Manager should be a common service capable of resolving VO specific package
dependencies and potentially installing or updating them across Grid sites, rather than of being part of
the Computing Element component definition. While in AliEn the state and history of running jobs are
accounted for in the File Catalogue, this functionality should be implemented through an additional
Job Provenance service with possibly a richer interface that can be used by several other components,
like the User Interface or Grid Portals.

As an example, the decomposition of the AliEn model of web services fitting these constrains arrives
at a picture of interacting services as shown in Figure 6.

User Interface Factory

Auditing

DBD/RDBMS

Registry/Lookup/Config

V.O. directory

Authentication

Storage Element

Gatekeeper

Job Manager

Transfer Manager

File Transfer

Process Monitor

Transfer Broker

Job Broker

Job Optimizer

Transfer Optimizer

Catalogue Optimiser

User Interface

Grid Monitoring

CE

1

1..n
1

1

0..n

1..n

1

1

1

1

1
1

1

1

1

0..n

0..n

0..n

0..n

0..n

1. lookup

2. authenticate

3. register

4. bind
Authorisation

File Catalogue

Metadata Catalogue

Task  Queue

DB PRoxy

1

1

1

1

Package Manager

Job Provenance

1

Authorisation

Accounting

111111111111111

1

1

API

Figure 6: AliEn services expanded to take into account the ARDA requirement to be able to use
alternative implementations of key services such as File or Metadata catalogues. This results in a need
to expose several software components of AliEn as proper Web Services.

To abstract the implementation details and retain manageable granularity of components, the services
are grouped together into logical groups, which correspond to the usual components found in Grid
implementations. Taking this approach, we derive the decomposition in the following key ARDA
services:

• API and corresponding Grid Access Service Components

• Authentication, Authorisation, Accounting and Auditing Services



LHC Grid Computing Project ARDA Report 22

• Workload and Data Management Systems

• File and Metadata Catalogue Services

• Information Service

• Grid and Job Monitoring Services

• Storage and Computing Element Services

• Package Manager and Job Provenance Services

Information 
Service

Authentication

Authorisation

Auditing

Grid 
Monitoring

 Workload 
Management

Metadata 
Catalogue

File 
Catalogue

Data 
Management

Computing 
ElementStorage 

Element

Job 
Monitor

Job 
Provenance

Package 
Manager

Grid Access 
Service

Accounting

Grid Access 
Service

User 
Application

Site 
Gatekeeper

7: 
12: 

5: 

13: 

8: 
15: 

11: 

9: 
10: 

1: 

4: 

2: 

3: 

6: 

14: 

Figure 7: A typical interaction between core ARDA Services and a “user” client, application
framework, or another component Grid service

In this picture, the user (or application framework, client tool, component service, etc.) interacts with
the service framework by means of an API that has basic interfaces as illustrated in Figure 7.

In the rest of this section we give brief descriptions of the services identified. Some of these services
may be in fact complex distributed applications, but their clients should not know anything about these
internal details.

4.2.1 API – Accessing ARDA Services

We envision several means by which users and application frameworks will gain access to ARDA
services.  An ARDA API, shown in Figure 8, would be a library of functions used for building client
applications like graphical Grid analysis environments, e.g. GANGA or Grid Web portals. The same
library can be used by Grid enabled application frameworks to access the functionality of the Grid
services discussed in this document. The API is used also to access files available on the Grid as well
as to put user files onto the Grid.  We consider files available on the Grid to be those stored on one or
more Storage Elements and registered in the File Catalogue or replica location service.



LHC Grid Computing Project ARDA Report 23

API

(from User Application)
+ Authentication

+ Data Management
+ Grid Service Management

+ Job Control
+ Metadata Management

+ NewInterface
+ Posix I/O

SOAP

(from API)

Grid File 
Access

(from API)

User 
Application

POOL/ROOT/...
(from User Application)

API (OGSI User Interface Factory)

SE (POSIX  I/O service)

Figure 8: Grid API for user and grid interactions

It is anticipated that developments in service oriented computing, such as workflow composition
languages and protocols using web services (such as emerging efforts of BPEL4WS [32] and W3C
initiatives in web service coordination, e.g. WSCI [33]) could be exploited to provide a richer set of
capabilities for the ARDA GAS/API.  Grid Service components can be used to specify processes, data
flows, and control mechanisms.  The Grid Service components will present a uniform public interface
in terms of uniform description of the constituent services, and specification of its input/output
messages. Advanced applications referencing core ARDA services could be developed using a Grid
Service Component Library and a construction framework for service composition (Figure 9).  The
application building framework provides a means to describe workflow logic, data flows, and control
mechanisms for service instances created from the GAS/API.

Figure 9: Construction of Grid service coordinators: Ingredients for building Grid applications by
composing application and core ARDA services using Grid Service Component libraries, adapted
from [34]

At the present time OGSI as such does not specify service behaviours at this level, though discussions
in the OGSA community are beginning to address issues of process coordination for Grid service
workflows[34]. As technology develops in these areas, ARDA should expose more complex analysis
process workflow capabilities using frameworks and composition patterns as indicated here.

Grid Service Components

Grid Service
Component

Library
Construction specification

Composition Logic

Composition Type
Message Dependency

Interface specification

Messages Operations

Grid Applications



LHC Grid Computing Project ARDA Report 24

4.2.2 Grid Access Service

The Grid Access Service (GAS) is an example Service Component, and represents the user entry point
to a set of core ARDA services. When a user starts a Grid session, he or she establishes a connection
with an instance of the GAS created by the GAS Factory for the purpose of this session.  The sequence
of interactions is illustrated in Figure 10.  During its creation the user is authenticated and his or her
rights for various Grid operations are checked against the Authorisation Service. Thus the GAS is a
stateful service that keeps the user credentials and authorisation information. Many of the User
Interface API functions are simply delegated to the methods of the GAS. In turn many of the GAS
functions are delegated to the appropriate service.

Figure 10: The sequence of interactions between ARDA services while an application initiates a
service instance, which provides its connection to the Grid

4.2.3 Information Service

Information Service provides information about the available services and their configuration. It
contains mostly static information about the service locations and capabilities. This information is
typically used by services to lookup and discover other appropriate services on the Grid. The dynamic
status information, e.g. the status of the occupancy of the Grid resources, is available from the
dedicated Grid Monitoring. VO-specific information and information about user in a given VO may be
part of this service.

4.2.4 Authentication Service

The Authentication Service is responsible for checking the user’s credentials. It can support different
authentication mechanisms. It collaborates with the Information Service to establish user identity.

4.2.5 Authorisation Service

Authorization Service provides information about the rights of an authenticated user to perform
various operations on the Grid.



LHC Grid Computing Project ARDA Report 25

Figure 11: The sequence of interactions betweens ARDA services with an application (experiment
analysis framework) executing a typical analysis workflow.



LHC Grid Computing Project ARDA Report 26

4.2.6 Auditing Service

An Auditing Service (Logger) provides the mechanism for all services to report their status and error
conditions. This allows Grid operations managers to monitor all exceptions in the system and to take
corrective action.

4.2.7 Accounting Service

The Accounting Service accumulates information about the use of the Grid resources by the users and
groups of users. This information serves to prepare Grid usage statistics reports. It is used also in the
enhanced workload management with quotas and other policies taken into account.

4.2.8 Workload Management Service

The Workload Management Service (WMS) receives the workload instructions from the users (and
potentially other services acting on the user’s behalf) in the form of jobs. It is responsible for selecting
the appropriate Computing Elements (CE) where the job can be run. If no CE is able to run the job,
some preparatory actions can be undertaken, e.g. bringing some of the input data to a near SE. The
WMS can modify the job descriptions, e.g. generate subjobs in order to optimise the overall job
execution. The WMS assigns an identifier to the accepted jobs that can be used later to interrogate the
job status. The WMS provides accounting information upon the job execution to the Accounting
Service and can be implemented as a compact or a distributed service, i.e. having internal distributed
components.

4.2.9 Job Provenance Service

The Job Provenance Service is a specialized database to keep track of the execution conditions for all
the Grid jobs. This information is used to reproduce the execution environment for the verification and
debugging purposes and possibly for rerunning certain jobs. The Job Provenance Service does not
contain the information used in the data queries.

4.2.10 File Catalogue Service

The File Catalogue Service keeps association between the logical file names (LFN) and their physical
replicas – physical file names (PFN). It contains also minimal metadata information, like file sizes,
check sums or file ownership which can serve for the data integrity checks as well as help
accomplishing data transfers, caching, etc. The File Catalogue organises its information in a
hierarchical structure. The users and groups of users can have private directories with restricted access.

4.2.11 Metadata Catalogue Service

The Metadata Catalogue Service contains additional information (arbitrary and extensible set of
attributes) about the contents of the available files. These metadata are used for querying the Metadata
Catalogue in the search for the datasets meeting the required criteria.

4.2.12 Data Management Service

Data Management is a service to manage scheduled data transfers. These transfers can be a part of
planned data replication (mirrors) or triggered by application access to logical files for which physical
file does not exist on near Storage Element. Therefore each data transfer can be scheduled and
managed very much like an ordinary job. Note that interface and utilities to upload files to and delete
from the Grid as well as to get access to them are contained in the API library.

4.2.13 Site Gatekeeper

The Proxy Service is running on the gatekeeper host of a CE. It is used to pass messages to and from
the instances of the Job Monitoring Service (see below) that are running on a Worker Node possibly
disconnected from the WAN.



LHC Grid Computing Project ARDA Report 27

4.2.14 Storage Element

The Storage Element (SE) is responsible for saving/retrieving files to/from the local storage that can
be a disk or a mass storage system. It manages disk space for files and maintains the cache for
temporary files.

4.2.15 Computing Element

Computing Element (CE) is a service representing a computing resource. Its interface should allow
execution of a job on the underlying computing facility, access to the job status information as well as
high-level job manipulation commands. The interface should also provide access to the dynamic status
of the computing resource like its available capacity, load and number of waiting and running jobs.
The status information should be available on per VO basis or each VO allowed to the site has its own
instance of the service.

Figure 12: The sequence of interactions between ARDA services illustrating possible job execution
model

4.2.16 Job Monitoring Service

Job Monitoring is a service that wraps up the running job and provides information about job status
and progress. Upon request, it presents this information to other services and provides access to the job
specification (JDL, etc) as well as to temporary and final files produced by the job (stdout, stderr, log
files, other outputs). The Job Monitoring Service communicates with clients outside the Grid site via a
Site Gatekeeper running on the gatekeeper node. The Gatekeeper Service is either a part of the
distributed Workload Management Service or an independent service.

4.2.17 Package Manager Service

The Package Manager Service is a specialised database for available software packages of a given VO.
It keeps track of the package names, versions and their locations in data repositories, usually Storage
Elements. The software package dependencies information is used by installation procedures to insure



LHC Grid Computing Project ARDA Report 28

coherency between the installed packages. The service provides also the information about the lifetime
of the packages that is used for the clean up of the obsolete versions installed on CEs.

4.2.18 Grid Monitoring Service

The Grid Monitoring Services provides dynamic information about the status of Grid resources:
computing, storage or network. This information is accumulated in the service repositories in order to
have a historic view of the resource status. The clients of the service are various Grid monitoring
visualisation tools as well as Workload Management Services that can optimise their scheduling
decisions based on the dynamic state of the Grid and/or on historical data of the resource usage.



LHC Grid Computing Project ARDA Report 29

5 THE ARDA PROTOTYPE

The main goal of an ARDA prototype is to provide a more complete blueprint and to develop the
specifications for functionality and interfaces of the ARDA services and API.

The ARDA prototype would allow investigating the LHC requirements on distributed analysis further.
We recognize the value of real prototyping of services, their functions and interfaces, providing
insights how the services implement the required functionality for distributed analysis. Only a
prototype will allow to realistically investigate the extent of the possible commonality between the
experiments in the API, which is ultimately necessary for the LHC experiments to run their
competitive physics research on top of a shared multi-VO environment.

It has been pointed out that there is no “evolutionary” path from the current GT2-based LCG
infrastructure, building upon the VDT[6] and EDG[7] components and software stack,  to a Grid
services architecture based on OGSI compliant services model. The prototype addresses this as it
enables to perform real-world OGSI modeling, functionality and performance tests and to address
issues how to deploy and run ARDA services along with the existing ones on the LCG-1 resources.
There are several areas where the ARDA services would leverage the emerging experience with
running a large distributed environment and exploit the R&D in the Grid middleware projects, e.g. in
the area of VO management, security infrastructure, set-up of the Computing and Storage Elements
etc.

We recommend that the LCG setup a project to develop the prototype, considering these main goals.
The schedule and milestones should commensurate with the need to expose the resulting functionality
and interfaces early to the community, and be on a timescale of 6 months.

Grid services descriptions and Grid services instances should be defined early in the project. This
should include descriptions and specification of core ARDA services, the definition of the external
interfaces, that is, the API to experiment frameworks, services and tools, and the interfaces to
infrastructure, facilities and fabrics. It is here where experiment developers and other Grid efforts
should be engaged from the beginning, and an initial release of the ARDA prototype should be made
available to the experiments and the Grid community. The internal interfaces between services should
be defined and documented with the end of the prototyping phase of about 6 months. Specific points
of interactions with the community should be provided, through early releases, workshops, and
actively seeking feedback on API, service interfaces and functionalities.

We recommend that the ARDA prototype project start with a careful definition of the work areas. The
constituency of the project and the project lead should be identified quickly, so that a team can be
built. The project should develop and present the work plan, schedule and milestones, including a plan
for interfacing to and engaging of LHC experiments and the LHC-related Grid community.

We propose a four-prong approach towards these goals:

1. Re-factoring of AliEn and possibly other services into ARDA, with a first release based on
OGSI::Lite[8]; consolidation of the API working with the experiments and the LCG-AA;
initial release of a fully functional prototype. Subsequently implementation of agreed
interfaces, testing and release of the prototype implementation.

2. Modeling of an OGSI-based services infrastructure, performance tests and quality assurance
of the prototype implementation

3. Interfacing to LCG-AA software like POOL and ROOT

4. Interfacing to experiment's frameworks, with specific meta-data handlers and experiment
specific services

The LCG Application Area, the LCG Grid Technology Area, and possibly the EGEE middleware
team, should be involved in the ARDA. We recommend the experiments be involved from the
beginning by working on the interface with the frameworks and integrating into the experiment's data
and metadata management environments. Other LHC-related projects should be engaged by exposing
services and GAS/API definitions early to allow synergistic developments from these projects. It is



LHC Grid Computing Project ARDA Report 30

important that the appropriate emphasis and effort is being put on documentation, packaging, releases,
deployment and support issues.

5.1 EXTENDING ARDA SERVICES

After the prototype phase, we expect a period of scaling-up and re-engineering the OGSI foundation,
the database, the information services etc.; deployment and interfaces to site and Grid operations, VO
management, information services infrastructure etc.; building higher level services and experiment
specific functionality; work on interactive analysis interfaces and new functionalities.

The list of ARDA services discussed in this document is by no means complete. It is likely that a fully
functional system will require additional services, for example management of virtual data, handling
of experiment specific services tied to persistency and event access models, specific VO policy
services or high level optimization and supervision services.

The ARDA blueprint offers the basic functionality required to fulfill the common needs of the LHC
experiments, while allowing building upon the basic services described in this document. This
approach provides opportunity for well-aligned further developments and the inclusion of new and
advanced functionalities.



LHC Grid Computing Project ARDA Report 31

6 REFERENCES

Acknowledgements
We gratefully acknowledge the contributions from Massimo Lamanna(CERN) to the ARDA RTAG,
who participated for a large fraction of the RTAG representing the LCG Grid Technology area.

We also acknowledge and thank for the input and contributions from many, from inside and outside
the LHC, in particular those who have given presentations to the RTAG, discussed with us or have
given their input in any way. (To Be Completed).

[1] Hepcal-II ref – the RTAG saw and discussed an initial draft version of the Hepcal-II report

[2] AliEn, http://alien.cern.ch,
CHEP2003 Proceedings: http://arXiv.org/abs/cs/0306067,
http://arXiv.org/abs/cs.dc/0306068,http://arXiv.org/abs/cs.dc/0306071, http://arXiv.org/abs/physics/0306103
[3] OGSI, http://www.gridforum.org/ogsi-wg/   

[4] GT3, the Globus Toolkit 3, http://www.globus.org

[5] GT2 reference

[6] VDT reference

[7] EDG reference

[8] OGSI::lite reference

[9] EGEE reference

[10] DIAL reference

[11] Clarens, http://clarens.sourceforge.net/, CHEP2003 Proceedings: Clarens Client and Server
Applications. Published in eConf C0303241:TUcT005,2003

[12] GANGA reference

[13] DIRAC reference

[14] Initial ARDA presentation to the SC2

[15] Final ARDA presentation to the SC2

[16] PROOF reference

[17] ROOT reference

[18] Web Services reference

[19] CONDOR reference

[] don’t know how to get rid of this line...we love MSword

[21] SRB reference

[22] WIRED reference

[23] CAIGEE reference http://pcbunn.cacr.caltech.edu/GAE/GAE.htm.

[24] SPHINX reference

[25] MonALISA, http://monalisa.cacr.caltech.edu/

[26] JAS reference

[27] PPDG CS11 reference

[28] Web Service Definition Language, W3C specification, http://www.w3.org/TR/wsdl

[29] SOAP 1.1 messaging protocol, http://www.w3.org/TR/SOAP/

[30] GSS-API reference

[31] GLUE schema reference



LHC Grid Computing Project ARDA Report 32

                                                                                                                                                                            

[32] Business Process Execution Language for Web Services (BPEL4WS), http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/

[33] Web Service Choreography Interface (WSCI), http://www.w3.org/TR/wsci/

[34] “Web Service Componentization”, J. Yang, Communications of the ACM, Vol 46, No. 10 (October
2003).


