
1

http://lcgapp.cern.ch/project/pi/

AIDA Proxy Unit TestsAIDA Proxy Unit Tests

Hurng-Chun Lee

Academia Sinica Computing Centre, 
Taiwan



2

AIDA Proxy LayerAIDA Proxy Layer

C++ proxy classes to AIDA interfaces
“Value semantics” for AIDA objects 
Implemented using the “Proxy” pattern, very easy !
Based only on AIDA Interfaces 

no dependency on a given implementation

Initially “hiding” of AIDA object management
AIDA tree is not exposed to users but hided in the Proxy implementation

Keeping the functionality and signatures of AIDA
“re-shuffling” of factory methods to object constructors



3

Purposes of the TestsPurposes of the Tests

Checking the functionalities of AIDA Proxy

Checking the consistencies between different histogram 
implementations through AIDA Proxy

Or obtaining the differences between implementations

Creating the unit test framework for AIDA Proxy on which the new
tests can be easily adapted



4

Current StatusCurrent Status

pi_aida Classes covered by the tests
Histogram1D, 2D, 3D
Cloud1D, 2D, 3D
Profile1D, 2D
DataPointSet
HistoProjector, ProxyStore

Over 1000 CppUnit assertions for consistency tests between 
Native and ROOT implementations

All independent tests have been integrated in Oval and QMtest



5

Hierarchical Structure of Unit TestsHierarchical Structure of Unit Tests

Test Group

Test Cases

Test Suite Test Suite Test Suite

xUnit



6

3D Histogram

2D Histogram

1D Histogram

Mean,  RMS
binMean,  binError ...

Unit Tests of AIDA ProxyUnit Tests of AIDA Proxy

CppUnit

I/OCopyImplement



7

Testing LogicTesting Logic

Reference Histogram

Target Histogram

mean mean
Equal?

RMS RMS
Equal?

binRms binRms
Equal?

Implementation

Copy

File I/O

Histogram Sources:
•Feeding with the data points
•Copying from different implementation
•Reading from XML/ROOT file

Test Suites

Test Cases



8

Test Suite CategoriesTest Suite Categories
Implementation

Copy

File I/O

Data Points
Ref. Histogram

Tgt. Histogram
Consistency tests

Data Points
Ref. Histogram

Tgt. Histogram

Consistency tests

Data Points
Ref. Histogram

Tgt. Histogram

Consistency testsFile

Feed

Feed

Feed

Feed

Copy

Output

Input



9

Data Points (Histogram View)Data Points (Histogram View)

Specific numbers
(-2.99, -1.05, 1.5, 5.65, 9.99, 10.01)

Random distribution
1000 numbers
Range: [0,1]

Gaussian distribution
1000 numbers
Mean:0 StdDev: 0.5



10

Code examples (Test Cases)Code examples (Test Cases)
Test case implementations of CppUnit::TestFixture

Tests of global statistics

Tests of local (per bin) statistics

Tests of annotations

void Histogram1D_TCase::tstMean() {
CPPUNIT_ASSERT_DOUBLES_EQUAL(refHist->mean(),trgHist->mean(),10e-6);

}

void Histogram1D_TCase::tstBinMean() {
for(unsigned int i=0; i<refHist->axis().bins(); i++) {

CPPUNIT_ASSERT_DOUBLES_EQUAL(refHist->binMean(i),trgHist->binMean(i),10e-6);
}

}

class Histogram1D_TCase : public CppUnit::TestFixture {
pi_aida::Histogram1D *refHist, *trgHist;
void tstMean();
void tstBinMean();
void tstTitle();

}

Histogram1D_TCase.h

Histogram1D_TCase.cpp

void Histogram1D_TCase::tstTitle() {
CPPUNIT_ASSERT_EQUAL(refHist->title(),trgHist->title());

}



11

Code Example (Test Suites)Code Example (Test Suites)
Ref./Tgt. Histogram and Test Case Specification

class Histogram1D_Impl : public Histogram1D_TCase {

CPPUNIT_TEST_SUITE(Histogram1D_Impl);
CPPUNIT_TEST(tstMean);
CPPUNIT_TEST(tstRms);
CPPUNIT_TEST(tstTitle);
CPPUNIT_TEST_SUITE_END();

refHist = new pi_aida::Histogram1D(“1D Native Histogram”,10,0,1,
“AIDA_Native_Histogram”);

trgHist = new pi_aida::Histogram1D(“1D ROOT Histogram”,10,0,1,
“AIDA_Root_Histogram”);

dg = new DataGen;
dg->random();
for(unsigned int i=0; i<dg->feeds.size(); i++);

refHist->fill(dg->feeds[i],dg->weight[i]);
trgHist->fill(dg->feeds[i],dg->weight[i]);

}
}

Histogram Initialization

Data Point Insertion

Test Case Specification



12

Testing ResultsTesting Results
PI version: PI_1_0_0

161 (~15%) failures in 1051 CppUnit
assertions

Failures are due to:
The mixture of bugs in AIDA Proxy and 
implementation differences

0%

20%

40%

60%

80%

100%

Hi
sto
gr
am
1D
Hi
sto
gr
am
2D
Hi
s
t
o
g
r
a
m
3
D

C
l
o
u
d1
D
Cl
ou
d
2
D
C
l
o
u
d
3

D
P
r
o
f
i

le1
D
Pr
of
i
le2
D
H
i
s
to
Pr
oj
2D
H
is
toP
r
o
j
3
D

Successes

Errors

Failures

0%

20%

40%

60%

80%

100%

H
i
s
t
o
g
r
a
m
1
D

H
i
s
t
o
g
r
a
m
2
D

H
i
s
t
o
g
r
a
m
3
D

C
l
o
u
d
1
D

C
l
o
u
d

2D
C
l
o
u
d

3D
P
rof
i
l
e1
D
P
rof
i
l
e2
D

D
a
t
a
P
o

in
t
S
e
t

H
i
s
t
oP
roj
2D
H
i
s
t
oP
roj
3D

Successes

Errors

Failures

PI version: PI_1_1_0-pre1
104 (~9%) failures in 1164 CppUnit
assertions
Failures are due to:

Implementation differences
– Root takes the binCentres instead of 

the values to calculate the global 
mean in H3D and Profiles

– Root doesn’t store the binMean
– Error treatment in Profile



13

Summary & Future worksSummary & Future works
Summary

New CppUnit based test package for AIDA Proxy Layer has been available 
from PI release 1.0.0 (Thanks Lorenzo, Andreas and Vincenzo for the inputs 
and discussions)

New tests can be easily added on by extending one of the three 
(Group/Suite/Case) levels in the hierarchical testing structure

All independent tests were integrated in Oval and QMtest (Thanks Manuel)

Future Works
Unit tests on Tuple, Fitter and Minimizer will be included in the coming PI 
release


