

Geneva, December 1877

When Cryogenic Engineering was born

Raoul Pictet

Abb. 44. SO₂-Eismaschine von RAOUL PICTET. A Kondensator, C Verdampfer, D Druckrohr, G Rührwerk, H Eiszelle, K Drosselventil, L Wassereintritt in den Kondensator, M Wasseraustritt.

Fliessbild von Pictets Anlage

Fig. 1. -- Grand appareil de M. Raoul Pictet pour la liquéfaction des gaz. (D'après une photographie.)

Lowering of Temperature and Production of Refrigeration

How can one reduce the temperature of a refrigerant below ambient temperature?

Our forefathers found three methods:

- Heat rejection to an even colder system
- Throttling (the method Pictet used)
- Performance of work by the refrigerant

 $u_2 - u_1 = p_1 v_1 - p_2 v_2$

Temperature change of the fluid through throttling depends on the properties

if v increases slower than	internal energy is
p decreasing	increased
if p*v = constant	internal energy stays constant
if v increases faster	internal energy is
than p decreases	reduced

pv - p Diagram of Nitrogen

Cryogenic Engineering, CERN, March 2004

11

Temperature change due to throttling

- Temperature reduction due to throttling of a saturated liquid is a large effect
- Temperature change of a gas can be positive or negative, depending on the region in the phase diagram
- In any case it is a small effect, initially considered not to be technically usable.
- But: Remember our assistant!

Internal heat exchange makes the production of refrigeration much easier

Recover unused Refrigeration by counter-current heat exchange

- Often not all produced refrigeration is used
- Idea: Recover the not-used refrigeration and use it for precooling of the inlet stream before the throttling
- Wilhelm Siemens (later Sir William Siemens) 1858 (long before Pictet!)

Combination of throttle refrigeration with countercurrent heat exchange (Linde 1895)

The death and resurrection of throttle refrigeration in cryogenics

- Linde knew that throttling was simple, but not effective
- Eventually work extracting expansion was to replace the throttling
- But recently throttle refrigeration has made a surprise comeback:
- Mixed Refrigerant JT-systems

"Mixing" is Throttling at constant pressure: If the mixing of two fluids leads to an increase in specific volume, a cooling effect will be observed

Temperature reduction by mixing at constant pressure and increase in specific volume: Cooling Tower

Mixing at constant pressure with increase in specific volume: Dilution Refrigerator

Summary of "Throttle Refrigeration"

- Throttling is a process at constant enthalpy
- Cooling effect depends on on the properties of refrigerant (the volume has to increase faster than the pressure decreases)
- Widely used in near ambient refrigeration
- Outside the two-phase region it is called the Joule-Thomson effect
- Effect can be extended to lower temperatures by recuperator
- Simple device without moving parts in cold section
- But: We can do better: Replace the throttling by a work extracting expander (tomorrow!)

Bis 1900 - Epoche der Pioniere

1700	A m o n to n	Tiefste Tem peratur: -240 °C
1800	C h a r l e s , G a y - L u s s a c	Tiefste Tem peratur: -273 °C
1842	R.Mayer	Äquivalenz von Wärme und Arbeit
1857	w.Siemens	Gegenstrom - Warmeubertrager in Energie-Kreisläufen
1863	Andrews	Kritischer Punkt
1872		Kühleffekt beim Drosseln von realem Gas (Joule-Thom son-Effekt)
1873	Van der Waals	Prinzip der Korrespondierenden Zustände
1877	Cailletet, Pictet	Flüssige Luft als Nebel
1883	W róblenski, Olszewski	Ruhig siedende flüssige Luft
1884	W roblenski	Flüssiger Wasserstoff als Nebel
1892	Dewar	Verspiegelte Vakuum isolation
1895	Linde, Hampson	Kontinuierliche Luftverflüssigung mit Joule-Thomson Kreislauf
1898	Dewar	W asserstoff Verflüssigung mit Joule - Thom son Kreislauf
1908	K a m m e rlingh O n n e s	Helium Verflüssigung mit Joule- Thomson Kreislauf