

Cryogenic Engineering CERN, March 8 - 12, 2004

- Temperature reduction by throttling and mixing
- Temperature reduction by work extraction
- Refrigeration cycles: Efficiency, compressors, helium, hydrogen
- Cooling of devices

Mankind had an intellectual difficulty with the production of refrigeration: We could not learn it from nature.

The problem: One has to add energy to remove energy.

Where should the outside power be applied Solution: One needs an additional sytem: The refrigerator

Refrigeration cyle

- Refrigerant
- Method to increase pressure
- Method to reduce entropy
- Method to reduce the temperature
- Method to transfer the refrigeration
- Recuperation

Widen the low-temperature end of the cycle as shown in the T-S diagram

Compressor and Aftercooler

- Purpose: Increase the pressure and reduce entropy
- Types of compressors
 - Volumetric compressors: piston, screw
 - Turbocompressors

Piston compressor

Oilfree labyrinth piston compressors. Preferred by CERN until about 1980.

Screw Compressor

Oil flooded screw compressor preferred at CERN since about 1985.

Screw compressor principle

Screw Compressor Installation

Fig. 2 Low Temperature Options

RUTA 16000/4/1 Helium-Pumpsystem Roots-Gruppe: RA 16000/RA 13000/RA 7001

Fig. 3 Cold Compressor diagram [3]

Cold Compressor Cartridges of 2.4 kW @ 1.8 K Refrigeration whits

1st stage

Cold compressor impeller

The four-stage LHC cold compressors

For fixed overall inlet & outlet conditions, coupling of the two machines *via* P inter maintains the operating point in the allowed range

How to evaluate efficiency and to identify

- losses
 When discussing expanders, we shortly talked about reversibility
- In power engineering there is always a best method to do something, i. e. no unnecessary losses = reversibility
- Losses can be idebtified by the deviation from reversibility
- Comparison is the input power
- We have to give refrigeration a value in the scale of the input power
- Carnot ratio

The definition of exergy

- Minimum amount of work to produce refrigeration
- Exergy= Mimimum Power= $Q^{(T_a-T_0)/T_0}$
- Minimum amount of power to change the state of a fluid from an initial state 1 to a final state 2:

•
$$e_2 - e_1 = h_2 - h_1 + T_a^*(s_2 - s_1)$$

The Exergy Mountains

Specific exergy of cold copper and helium

Stored exergy in the cooled-down LHC

	Mass	Specific Exergy	Stored Exergy
	(tons)	(MJ/kg)	(GJ)
Helium	96	6.8	660
Metal	36.000	0.065	2.340
Total			3.000
Magnetic			10
energy			

Helium is recovered from natural gas

Annual Helium Recovery and Sales (USA)

1999 Helium World Production (Estimated by U.S. Geological Survey)

	Produced	Liquefied	Shipmen	Shipments
	10^{6}	10^6 Nm ³ /year	ts per	per week
	Nm ³ /year		year	-
United States	118,0	69,0	2450	49
		(export 29,3)		
Algeria	16,0	16,0	550	11
Russia	4,2	4,2	150	3
Poland	1,4	1,4	50	1
Total	139,6	90,6	3200	64
		(15.000 l/h)		

Development of the size of helium refrigerators and liquefiers in the last century.

C.O.P. of Large Cryogenic Helium Refrigerators

Fig. 4 Development of the Joule-Thomson Stage of Large Helium Refrigerators

construction

planning

Table 1 Cryogenic Accelerator and Fusion Projects

Project	Location	Capacity	No.	Refr. below 4.4 K	Status
		(kW at 4.4 K)	Refr		
Accelerators					
Tevatron	Fermilab	30	2+12	1.2 kW at 3.6 K	operation
RHIC	Brookhaven	25			operation
HERA	DESY	30	3	4 kW at 3.7 K	operation
CEBAF	TJNAF	12		5 kW at 2.0 K	operation
LEP	CERN	72	4		stopped
S-DALINAC	Darmstadt	0.4		0.1 kW at 2.0 K	operation
ELBE	Rossendorf	0.6		0.2 kW at 1.8 K	operation
LHC	CERN	144	8	2.4 kW at 1.8 K	construction
	Oak Ridge	12		5 kW at 2.0 K	construction
TESLA	DESY	140	7	5 kW at 2.0 K	adv. planning
RIA [1]	Argonne	30		8.6 kW at 2.0 K	early planning
SIS 100+200	GSI Darmstadt	20		?	early planning
SASE-FEL	BESSY	12		3.6 kW at 1.8 K	early planning
					· · · · · · · · · · · · · · · · · · ·
Fusion					
MFTF	Livermore	12	2		stopped
JET	Culham	1.5	2	0.6 kW at 3.8 K	operation
Tore Supra	Cadarache	2		0.3 kW at 1.75 K	operation
TOSKA	Karlsruhe	3		2 kW at 3.7 K	operation
LHD	Toki	8			operation
Wendelstein	Greifswald	4		3 kW at 3.5 K	construction
SST-1	India	1			construction

Cryogenic Engineering,

10

120

KSTAR

ITER

Korea

?

History of gas liquefaction

History of use of liquid hydrogen

Liquid Hydrogen Fuelled Rocket

BEBC (Big European Bubble Chamber at CERN)

Liquid Hydrogen Fuelled Car

Liquid hydrogen tank in car

Hydrogen

Future Large Scale Hydrogen Liquefier

