

Raffael's Sixtinische Madonna in der Galerie Alte Meister in Dresden

Die Neubauten für die Mechanische Abteilung der Königl. Sächs. Technischen Hochschule zu Dresden Im Vordergrund das Maschinenlaboratorium

Cryogenic Engineering CERN, March 8 - 12, 2004

- Temperature reduction by throttling and mixing
- Temperature reduction by work extraction
- Refrigeration cycles: Efficiency, compressors, helium, hydrogen
- Cooling of devices

Applications of Superconducting Magnets

Energy technology

Fusion reactor MHD generator Turboalternator Tranformer Fault current limiter Magnetic energy storage (SMES)

Mobility Levitated train MHD ship propulsion

Medicine

Magnetic tomography Radiation treatment

Research

Accelerators Detectors Spectrometers Gyrotrons

BILD 2.2 INTERSEKTION 8 DES ISR - SPEICHERRINGS

PHASE DIAGRAM OF HELIUM

Cooling options with Helium

Cooling Options for Superconducting Magnets Bath Cooling

Thermosiphon

Forced Cooling: One-phase

Forced Cooling: One-phase

Forced Flow Supercritical Cooling with Pressure Drop

Pressure Drop	Enthalpy rise	Pump work	Ratio
	J/g	J/g	
5 - 4 bar	0,98	0,74	1,3
4 - 3 bar	1,22	0,77	1,6
3 -2 bar	1,75	0,80	2,2

Forced Cooling: Two-phase with Low Quality Outlet

Residual Evaporation in Heat Exchanger

With Liquid Recirculation Pump

The maldistribution problem with parallel cooling channels

Parallel cooling channels share the same pressure drop. If one channel takes more coolant flow, all others get less.

One-phase turbulent flow gives a stable distribution.

One phase laminar flow is less stable, depends on orientation.

Multi-channel plate-fin heat exchangers

Aufbau von Plate-Fin-Wärmeaustauschern und wichtigste Rippentypen (Linde)

The maldistribution problem with parallel cooling channels with two-phase flow

If the flow is upwards, the flow distribution is probably stable. If the channels are horizontal, the distribution is poor, if the vapour content is too high. If the flow is downward, the distribution is certainly poor: One channel will take the liquid and the others only get vapour.

Coldbox with horizontal multi-channel heat exchangers

Flow distribution in exchangers is acceptable in the warm section, but has failed sometimes in the Joule-Thomson exchanger.

Critical Current Density of Technical Superconductors

Superfluid Helium Cooled Magnets

The coldest ring in the universe!

Phase Diagram of Helium

KK

Superfluid Helium as a Magnet Coolant

- <u>Temperature</u> below 2.17 K
- Low bulk <u>viscosity</u>
- Very large <u>specific heat</u>
 - 10⁵ times that of the conductor per unit mass
 - 2 x 10³ times that of the conductor per unit volume
- Very high <u>thermal conductivity</u>
 - 10³ times that of cryogenic-grade OFHC copper
 - peaking at 1.9 K
 - still, insufficient for long-distance heat transport

Equivalent Thermal Conductivity of He II

Pressurised vs. Saturated Superfluid Helium

- + <u>Mono-phase</u> (pure liquid)
- + Magnet bath at <u>atmospheric pressure</u>
 - no air inleaks
 - higher heat capacity to the lambda line
- + Avoids bad <u>dielectric strength</u> of lowpressure gaseous helium
- Requires <u>additional heat exchanger</u> to saturated helium heat sink

CERN AC _ EI2-12 VE _ V9/9/1997

Map of LHC & General Layout of Cryogenic System

Pt 5

Transport of Refrigeration in Large Distributed Cryogenic Systems

Simplified Geological Section of LHC Tunnel

Elevation Difference along LHC Tunnel

Patterns in Quasi-horizontal Two-phase Flow

Calculated Temperature Profiles of LHC

He Subcooling Boosts J-T Expansion

Prototype Subcooling Heat Exchangers

Mass-flow: 4.5 g/s \triangle P VLP stream: < 100 Pa Sub-cooling T: < 2.2 K

Copper Plates with SS Spacers

