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Raffael‘s Sixtinische Madonna 
in der Galerie Alte Meister 
in Dresden
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Cryogenic Engineering

CERN, March 8 - 12, 2004

• Temperature reduction by throttling 
and mixing

• Temperature reduction by work 
extraction

• Refrigeration cycles: Efficiency, 
compressors, helium, hydrogen

• Cooling of devices
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Applications of Superconducting Magnets

• Energy technology
 Fusion reactor
 MHD generator
 Turboalternator
 Tranformer
 Fault current limiter
 Magnetic energy storage 

(SMES)
Research

Accelerators
Detectors
Spectrometers
GyrotronsMobility

Levitated train
MHD ship propulsion

Medicine
Magnetic tomography
Radiation treatment
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Cooling options 
with Helium
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Cooling Options for Superconducting Magnets
Bath Cooling

Bath Cooling

M

Bath Cooling with
Thermosiphon
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One-phase with JT-
Stream

One-phase with
Circulation Pump

Forced Cooling: One-phase

One-phase with
Continuous Recooling
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One-phase with JT-
Stream

One-phase with
Circulation Pump

Forced Cooling: One-phase

One-phase with
Continuous Recooling
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One-phase cooling with temperature rise 
from 4.5 to 4.8 Kwith 1 bar pressure drop

1.2 bar

5 bar

4
3 2

4. 5 K 4.8 K

4.4 K bath

Helium Pump

Cryostat

1 bar Pressure Drop

Pressure Drop Enthalpy rise Pump work Ratio
J/g J/g

5 - 4 bar 0,98 0,74 1,3
4 - 3 bar 1,22 0,77 1,6
3 -2 bar 1,75 0,80 2,2

Forced Flow Supercritical Cooling with Pressure Drop
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Residual Evaporation
in Heat Exchanger

Forced Cooling: Two-phase with Low Quality Outlet

M

With Liquid
Recirculation Pump
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The maldistribution problem with parallel 

cooling channels

R1

R2

R3

∆p

∆p

m

turbulent

laminar

Parallel cooling channels share the same pressure drop. If one channel
takes more coolant flow, all others get less.

One-phase turbulent flow gives a stable distribution.
One phase laminar flow is less stable, depends on orientation.
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Multi-channel plate-fin 
heat exchangers
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The maldistribution problem with parallel 

cooling channels with two-phase flow

If the flow is upwards, the flow distribution is probably stable.
If the channels are horizontal, the distribution is poor, if the 
vapour content is too high.
If the flow is downward, the distribution is certainly poor: 
One channel will take the liquid and the others only get vapour.
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Coldbox with horizontal multi-channel 

heat exchangers

Flow distribution in exchangers is 
acceptable in the warm section, but
has failed sometimes in the 
Joule-Thomson exchanger.
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Critical Current Density

of Technical Superconductors
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Superfluid Helium Cooled Magnets

The coldest ring in the universe!

T
1.9 K 2.728 K
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Phase Diagram of Helium
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Superfluid Helium as a Magnet Coolant

• Temperature below 2.17 K
• Low bulk viscosity
• Very large specific heat

– 105 times that of the conductor per unit mass
– 2 x 103 times that of the conductor per unit 

volume
• Very high thermal conductivity

– 103 times that of cryogenic-grade OFHC copper
– peaking at 1.9 K
– still, insufficient for long-distance heat 

transport
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Equivalent Thermal Conductivity of He II
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Pressurised vs. Saturated Superfluid Helium

+ Mono-phase (pure liquid)
+ Magnet bath at atmospheric pressure

• no air inleaks
• higher heat capacity to the lambda line

+ Avoids bad dielectric strength of low-
pressure gaseous helium

– Requires additional heat exchanger to 
saturated helium heat sink
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Map of LHC

& General Layout of Cryogenic System
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Transport of Refrigeration in Large Distributed Cryogenic Systems
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Simplified Geological Section of 

LHC Tunnel
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Elevation Difference along LHC Tunnel
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Patterns in Quasi-horizontal Two-phase Flow
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Two-phase Flow of Saturated He II
(Mandhane, Gregory & Aziz flow map)
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Calculated Temperature Profiles of LHC 

Magnets
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He Subcooling Boosts J-T Expansion
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Prototype Subcooling Heat Exchangers

Stainless Steel Plate

Perforated
Copper Plates
with SS Spacers

SS Coiled Tubes 

Mass-flow: 4.5 g/s
∆P VLP stream: < 100 Pa
Sub-cooling T: < 2.2 K

Courtesy of DATE

Courtesy of SNLS

Courtesy of Romabau


