Neutrinos

CERN 22-26/3/2004

Yossi Nir (Weizmann Institute of Science)

Recent collaborations with

- Jonathan Feng (Irvine)
- Concha Gonzalez-Garcia ${ }^{\dagger}$ (Stony Brook)
- Yuval Grossman (Technion)
- Tamar Kashti (Weizmann)
- Carlos Peña-Garay (IAS, Princeton)
- Esteban Roulet (Bariloche)
- Yael Shadmi (Technion)
- Alexei Smirnov (Trieste)
\dagger Review of Modern Physics 75 (2003) 345

Special thanks to

- Concha Gonzalez-Garcia
- Guy Raz

Pauli (1930)

Abstract

Dear Radioactive Ladies and Gentlemen, As the bearer of these lines, to whom I graciously ask you to listen, will explain to you in more detail, how because of the "wrong" statistics of the N and Li6 nuclei and the continuous beta spectrum, I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons, which have spin $1 / 2$ and obey the exclusion principle and which further differ from light quanta in that they do not travel with the velocity of light. The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton masses. The continuous beta spectrum would then become understandable by the assumption that in beta decay a

neutron is emitted in addition to the electron such that the sum of the energies of the neutron and the electron is constant...

I agree that my remedy could seem incredible because one should have seen those neutrons very earlier if they really exist. But only the one who dare can win and the difficult situation, due to the continuous structure of the beta spectrum, is lighted by a remark of my honored predecessor, Mr Debye, who told me recently in Bruxelles: "Oh, It's well better not to think to this at all, like new taxes". From now on, every solution to the issue must be discussed. Thus, dear radioactive people, look and judge. Unfortunately, I cannot appear in Tubingen personally since I am indispensable here in Zurich because of a ball on the night of 6/7 December. With my best regards to you, and also to Mr Back.

Your humble servant
W. Pauli

Plan of Talk

Plan of Talks

1. The Standard Model and (a Little) Beyond
2. Neutrinos (Mainly) from Heaven
3. The Numbers and What They Tell Us
4. The Flavor Puzzle(s)
5. Leptogenesis

Plan of Talk

Plan of Talk I

The Standard Model and (a Little) Beyond

1. The SM as a complete theory
2. Neutrino masses in the SM
3. The SM as an effective theory
4. Neutrino masses beyond the SM
5. The seesaw mechanism

The SM and (a Little) Beyond

What Are Neutrinos?

1. Spin $1 / 2$ - Fermions
2. $S U(3)_{\mathrm{C}}$ singlets - No strong interactions
3. $U(1)_{\text {EM }}$ singlets - No EM interactions

What Are Neutrinos?

1. Spin $1 / 2$ - Fermions
2. $S U(3)_{\mathrm{C}}$ singlets - No strong interactions
3. $U(1)_{\text {EM }}$ singlets - No EM interactions

4a. $S U(2)$ doublets - Weak interactions (active)
4s. $S U(2)$ singlets - No weak interactions (sterile)

The Standard Model

The SM and (a Little) Beyond

A Particle Physics Model

1. Symmetry
2. Matter content (spin $1 / 2$ and spin 0 fields)
3. Spontaneous symmetry breaking

A Particle Physics Model

1. Symmetry
2. Matter content (spin $1 / 2$ and spin 0 fields)
3. Spontaneous symmetry breaking

The Standard Model

1. $G_{\mathrm{SM}}=$ Local $S U(3)_{\mathrm{C}} \times S U(2)_{\mathrm{L}} \times U(1)_{\mathrm{Y}}$
2. (a) Spin 1/2: $3 \times$

$$
\left\{Q(3,2)_{1 / 6}+U(3,1)_{2 / 3}+D(3,1)_{-1 / 3}+L(1,2)_{-1 / 2}+E(1,1)_{-1}\right\}
$$

(b) Spin 0: $\phi(1,2)_{1 / 2}$
3. $\left\langle\phi^{0}\right\rangle \neq 0 \Longrightarrow G_{\mathrm{SM}} \rightarrow S U(3)_{\mathrm{C}} \times U(1)_{\mathrm{EM}}$

Fermions of the Standard Model

	Name	Color	EM-charge
$Q(3,2)_{1 / 6}$	Quark doublets	Yes	$+2 / 3,-1 / 3$
$U(3,1)_{2 / 3}$	Up-quark singlets	Yes	$+2 / 3$
$D(3,1)_{-1 / 3}$	Down-quark singlets	Yes	$-1 / 3$
$L(1,2)_{-1 / 2}$	Lepton doublets	No	$-1,0$
$E(1,1)_{-1}$	Charged lepton singlets	No	-1

Interaction basis

Given the Standard Model

1. Symmetry
2. Particle content
3. Renormalizability (no terms of dimension $>$ mass 4)

$$
\Longrightarrow \mathcal{L}_{L}=i \overline{L_{i}} \gamma_{\mu}\left(\partial^{\mu}+\frac{i}{2} g W_{b}^{\mu} \tau_{b}+\frac{i}{2} g^{\prime} B^{\mu}\right) L_{i}-\left(Y_{i j}^{\ell} \overline{L_{i}} \phi E_{j}+\text { h.c. }\right)
$$

Mass basis

Interaction \rightarrow Mass

$$
\begin{array}{lll}
L_{i} & \left(\ell_{i}^{-}, \nu_{i}\right) & 3 \text { active } \nu^{\prime} \mathrm{s}: \nu_{e}, \nu_{\mu}, \nu_{\tau} \\
W_{\mu}^{b}, B_{\mu} & W_{\mu}^{ \pm}, Z_{\mu}^{0}, \gamma_{\mu} & Z_{\mu}^{0}=\cos \theta_{W} W_{\mu}^{3}-\sin \theta_{W} B_{\mu} \\
\phi & \left(\phi^{+}, \phi^{0}\right) & \phi^{+} \text {eaten by } W^{+} \\
\Longrightarrow & \mathcal{L}_{\nu}=i \overline{\nu_{i}} \gamma^{\mu} \partial_{\mu} \nu_{i}-\frac{g}{\sqrt{2}}\left(\overline{\nu_{i}} \gamma^{\mu} W_{\mu}^{+} \ell_{i}^{-}+\text {h.c. }\right)-\frac{g}{2 \cos \theta_{W}} \overline{\nu_{i}} \gamma^{\mu} Z_{\mu}^{0} \nu_{i}
\end{array}
$$

- Charged current interactions $\left(W^{ \pm}\right)$
- Neutral current interactions $\left(Z^{0}\right)$
- No Yukawa interactions $\left(\phi^{0}\right)$
- No mass terms

Dirac and Majorana

$$
\begin{gathered}
\text { Dirac } \\
\bar{\nu} \longrightarrow \longrightarrow \\
\nu \longrightarrow \\
\\
\mathcal{L}_{D}=m_{D} \overline{\nu_{R}} \nu_{L}+\text { h.c. } \\
\Delta L=0
\end{gathered}
$$

- $\nu^{c}=C \bar{\nu}^{T}, C=$ charge conjugation matrix
- $\nu, \overline{\nu^{c}}$ annihilate ν, create $\bar{\nu}$
- $\bar{\nu}, \nu^{c}$ create ν, annihilate $\bar{\nu}$

The SM and (a Little) Beyond

$$
m_{\nu}=0
$$

$$
m_{\nu} \overline{\nu_{L}^{c}} \nu_{L} ?
$$

Given the Standard Model

1. Symmetry
2. Particle content
3. Renormalizability (no terms of dimension $>$ mass 4)

The SM and (a Little) Beyond

$$
m_{\nu}=0
$$

$$
m_{\nu} \overline{\nu_{L}^{c}} \nu_{L} ?
$$

Given the Standard Model

1. Symmetry
2. Particle content
3. Renormalizability (no terms of dimension $>$ mass 4)

(to all orders in perturbation theory and beyond!)

The SM and (a Little) Beyond

Beyond the Standard Model

Reasons Not to Believe the Standard Model

1. The fine-tuning problem
2. The strong CP problem
3. Baryogenesis
4. Gauge coupling unification
5. The flavor puzzle
6. Gravity

Reasons Not to Believe the Standard Model

1. The fine-tuning problem
2. The strong CP problem
3. Baryogenesis
4. Gauge coupling unification
5. The flavor puzzle
6. Gravity
7. Supersymmetry
8. Peccei-Quinn symmetry
9. Heavy sterile neutrinos
10. GUT
11. Horizontal symmetry
12. String theory

Reasons Not to Believe the Standard Model

1. The fine-tuning problem
2. The strong CP problem
3. Baryogenesis
4. Gauge coupling unification
5. The flavor puzzle
6. Gravity
7. Supersymmetry
8. Peccei-Quinn symmetry
9. Heavy sterile neutrinos
10. GUT
11. Horizontal symmetry
12. String theory

Very likely, there is new physics

$$
\Lambda_{\mathrm{EW}} \ll \Lambda_{\mathrm{NP}} \leq M_{\text {Planck }}
$$

SM = LEET

Very likely, the Standard Model is a low energy effective theory (LEET) valid only below a scale $\Lambda_{\mathrm{NP}}\left(\gg \Lambda_{\mathrm{EW}}\right)$
\Longrightarrow Renormalizability is no longer required

$$
\mathcal{L}=\mathcal{L}^{\mathrm{SM}}+\frac{1}{\Lambda_{\mathrm{NP}}} O_{d=5}+\frac{1}{\Lambda_{\mathrm{NP}}^{2}} O_{d=6}+\cdots
$$

- $B-L$ is violated by nonrenormalizable terms

Interaction basis

Given the Standard Model

1. Symmetry
2. Particle content

$$
\mathcal{L}_{L}=\mathcal{L}_{L}^{\mathrm{SM}}+\frac{Z_{i j}^{\nu}}{\Lambda_{\mathrm{NP}}} \phi \phi L_{i} L_{j}+\mathcal{O}\left(\frac{1}{\Lambda_{\mathrm{NP}}^{2}}\right)
$$

Mass basis

$$
\begin{aligned}
\mathcal{L}_{\nu} & =i \overline{\nu_{i}} \gamma^{\mu} \partial_{\mu} \nu_{i}-\frac{g}{2 \cos \theta_{W}} \overline{\nu_{i}} \gamma^{\mu} Z_{\mu}^{0} \nu_{i} \\
& -\frac{g}{\sqrt{2}} \overline{\ell_{i}} \gamma^{\mu} U_{i j} W_{\mu}^{-} \nu_{j}+\text { h.c. } \\
& +m_{i} \nu_{i} \nu_{i}+\text { h.c. }+\cdots
\end{aligned}
$$

- CC interactions involve the mixing matrix U
- Majorana mass terms: $m_{i}=\frac{Z_{i}^{\nu}\langle\phi\rangle^{2}}{\Lambda_{\mathrm{NP}}}$
- $U+m_{i} \Longrightarrow 3$ masses, 3 mixing angles, 3 phases

The SM and (a Little) Beyond

Interactions of $\mathrm{SM}=\mathrm{LEET}$

Interaction
SM
$+\frac{1}{\Lambda} L L \phi \phi$

CC

NC

Yukawa
None

Masses
None

(Majorana)

The SM and (a Little) Beyond

$$
m_{\nu} \neq 0
$$

If the SM is an effective theory, valid only below a scale $\Lambda_{\mathrm{NP}} \gg\langle\phi\rangle$

- Neutrinos are massive $-m_{\nu} \sim \frac{\langle\phi\rangle^{2}}{\Lambda_{\mathrm{NP}}}$
- Neutrinos are light $\quad-\frac{\langle\phi\rangle^{2}}{\Lambda_{\mathrm{NP}}} \ll\langle\phi\rangle$

The SM and (a Little) Beyond

$$
m_{\nu} \neq 0
$$

If the SM is an effective theory, valid only below a scale $\Lambda_{\mathrm{NP}} \gg\langle\phi\rangle$

- Neutrinos are massive $-m_{\nu} \sim \frac{\langle\phi\rangle^{2}}{\Lambda_{\mathrm{NP}}}$
- Neutrinos are light $\quad-\frac{\langle\phi\rangle^{2}}{\Lambda_{\mathrm{NP}}} \ll\langle\phi\rangle$

Examples:

- $\frac{\langle\phi\rangle^{2}}{\Lambda_{\mathrm{GUT}}} \sim 10^{-2} \mathrm{eV}$
- $\frac{\langle\phi\rangle^{2}}{M_{\text {Planck }}} \sim 10^{-5} \mathrm{eV}$.

Cosmology:

- $m_{\nu} \leq \mathcal{O}(e V) \Longrightarrow \Lambda_{\mathrm{NP}} \geq \mathcal{O}\left(10^{14} \mathrm{GeV}\right)$

The See-Saw Mechanism (I)

$\underline{\mathrm{SM}+\mathrm{N}}$

- Add to the SM $G_{\text {SM }}$-singlet fermions, $N(1,1)_{0}$
$\Longrightarrow \mathcal{L}_{N}=Y \bar{L} \phi^{\dagger} N+M N N$
$\Longrightarrow M_{\nu}=\left(\begin{array}{cc}0 & Y\langle\phi\rangle \\ Y\langle\phi\rangle & M\end{array}\right)$
- Assume $M \gg\langle\phi\rangle \Longrightarrow m_{N}=M, \quad m_{\nu}=\frac{Y^{2}\langle\phi\rangle^{2}}{M}$

The See-Saw Mechanism (I)

$\underline{\mathrm{SM}+\mathrm{N}}$

- Add to the SM $G_{\text {SM }}$-singlet fermions, $N(1,1)_{0}$
$\Longrightarrow \mathcal{L}_{N}=Y \bar{L} \phi^{\dagger} N+M N N$
$\Longrightarrow M_{\nu}=\left(\begin{array}{cc}0 & Y\langle\phi\rangle \\ Y\langle\phi\rangle & M\end{array}\right)$
- Assume $M \gg\langle\phi\rangle \Longrightarrow m_{N}=M, \quad m_{\nu}=\frac{Y^{2}\langle\phi\rangle^{2}}{M}$
- With $3 L_{i}$ and $n N_{j}$:
- $Y=3 \times n$ matrix, $M=n \times n$ symmetric matrix
- $M_{\nu}^{\text {light }}=\langle\phi\rangle^{2} Y M^{-1} Y^{T}$

The SM and (a Little) Beyond

The See-Saw Mechanism

- A diagram in the $\mathrm{SM}+\mathrm{N}$:

- At energy scales $E \ll M$:

The See-Saw Mechanism (III)

$$
m_{\nu}=\frac{Y^{2}\langle\phi\rangle^{2}}{M}
$$

- The heavier N, the lighter $\nu \Longrightarrow$ "The see-saw mechanism"
- A specific realization of $\mathrm{SM}=\mathrm{LEET}, \Lambda_{\mathrm{NP}}=M / Y^{2}$
- Arises in many extensions of the SM: SO(10), LRS...

Summary

Theoretical Expectations

$$
\mathrm{SM} \quad m_{\nu}=0
$$

NP $\quad 10^{-5} \mathrm{eV} \leq m_{\nu} \leq e V^{\prime} s$

$$
m_{\nu} \sim\langle\phi\rangle^{2} / \Lambda_{\mathrm{NP}}
$$

Next
Q: How to search for $m_{\nu}<e V$?
A: Neutrinos (mainly) from Heaven!

Counting Physical Phases (Quarks)

1. A unitary 3×3 matrix, $V^{\dagger} V=1 \Longrightarrow 3$ angles +6 phases;
2. Mass basis $\equiv M_{q}^{\text {diag }}$ is diagonal and real;
3. Freedom in choosing phases $\left(P_{f}=\operatorname{diag}\left(e^{i \alpha_{1}^{f}}, e^{i \alpha_{2}^{f}}, e^{i \alpha_{3}^{f}}\right)\right)$

4. $D_{L} \rightarrow P_{d} D_{L}, D_{R} \rightarrow P_{d} D_{R} \Longrightarrow M_{d}^{\text {diag }} \rightarrow M_{d}^{\text {diag }}$
$U_{L} \rightarrow P_{u} U_{L}, U_{R} \rightarrow P_{u} U_{R} \quad \Longrightarrow \quad M_{u}^{\text {diag }} \rightarrow M_{u}^{\text {diag }} ;$
5. $V \rightarrow P_{u}^{*} V P_{d} \Longrightarrow$ remove 5 phases: $6-5=1$
6. An alternative proof in interaction basis:
$M_{u}, M_{d}: U(3)_{Q} \times U(3)_{U} \times U(3)_{D} \rightarrow U(1)_{B} \Longrightarrow 18-18+1=1$

Counting Physical Phases (Leptons)

1. A unitary 3×3 matrix, $U^{\dagger} U=1 \Longrightarrow 3$ angles +6 phases;
2. Mass basis $\equiv M_{\ell}^{\text {diag }}$ is diagonal and real;
3. Freedom in choosing phases $\left(P_{f}=\operatorname{diag}\left(e^{i \alpha_{1}^{f}}, e^{i \alpha_{2}^{f}}, e^{i \alpha_{3}^{f}}\right)\right)$

4. $E_{L} \rightarrow P_{e} E_{L}, E_{R} \rightarrow P_{e} E_{R} \Longrightarrow M_{e}^{\text {diag }} \rightarrow M_{e}^{\text {diag }} ;$ $\nu_{L} \rightarrow P_{\nu} \nu_{L} \quad \Longrightarrow \quad M_{\nu}^{\text {diag }} \rightarrow P_{\nu} M_{\nu}^{\text {diag }} P_{\nu} \quad \Longrightarrow \quad$ not allowed;
5. $U \rightarrow P_{e}^{*} U \Longrightarrow$ remove 3 phases: $6-3=3$
6. An alternative proof in interaction basis:
$M_{e}, M_{\nu}: U(3)_{L} \times U(3)_{E} \rightarrow$ nothing $\Longrightarrow 15-12+0=3$
