<u>Plan of Talks</u>

- 1. The Standard Model and (a Little) Beyond
- 2. Neutrinos (Mainly) from Heaven
- 3. The Numbers and What They Tell Us
- 4. Flavor Models
- 5. Leptogenesis

Plan of Talk II

Neutrinos (Mainly) from Heaven

- 1. Vacuum oscillations
 - Atmospheric neutrinos (AN)
 - Reactor neutrinos (RN)
 - Solar neutrinos (SN)
- 2. The MSW effect
 - Solar neutrinos (SN)

Neutrinos (Mainly) from Heaven

Pontecorvo, 1957

Flavor Transitions (I)

- Flavor basis (production and detection): ν_e , ν_{μ} , ν_{τ}
- Mass basis (free propagation in space-time): ν_1 , ν_2 , ν_3
- In general, flavor eigenstates \neq mass eigenstates

•
$$U(\nu_1, \nu_2, \nu_3)^T = (\nu_e, \nu_\mu, \nu_\tau)^T$$

- Flavor is not conserved during propagation in space-time
- ν_{α} is produced but $\nu_{\beta \neq \alpha}$ might be detected ($\alpha, \beta =$ flavors)

Vacuum oscillations

Flavor Transitions (II)

Neutrinos

Flavor Transitions (III)

The probability $P_{\alpha\beta}$ of producing neutrinos of flavor α and detecting neutrinos of flavor β is calculable in terms of

- The neutrino energy E
- The distance between source and detector L
- The mass-squared differences $\Delta m_{ij}^2 \equiv m_i^2 m_j^2$

- $(P_{\alpha\beta} \text{ is independent of the absolute mass scale})$

• U parameters (mixing angles and phase)

- $(P_{\alpha\beta}$ is independent of the Majorana phases)

Oscillations

$$\begin{aligned} |\nu_{\alpha}\rangle &= U_{\alpha i}^{*} |\nu_{i}\rangle & |\nu_{\alpha}(t)\rangle &= \sum_{i} U_{\alpha i}^{*} |\nu_{i}(t)\rangle \\ |\nu_{i}(t)\rangle &= e^{-iE_{i}t} |\nu_{i}(0) & E_{i} &= \sqrt{p^{2} + m_{i}^{2}} \simeq p + \frac{m_{i}^{2}}{2E} \end{aligned}$$

$$P_{\alpha\beta} = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^{2}$$

$$= \sum_{i} |\langle \nu_{\beta} | \nu_{i} \rangle \langle \nu_{i} | \nu_{\alpha}(t) \rangle|^{2}$$

$$= \delta_{\alpha\beta} - 4 \sum_{j>i} \mathcal{R}e(U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}) \sin^{2} \left[(\Delta m_{ij}^{2}L)/(4E) \right]$$

$$+ 2 \sum_{j>i} \mathcal{I}m(U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}) \sin \left[(\Delta m_{ij}^{2}L)/(2E) \right]$$

Two Generations

- A single mixing angle: $U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$
- A single mass-squared difference: $\Delta m^2 = m_2^2 m_1^2$

$$P_{\alpha\beta} = \sin^2 2\theta \ \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Vacuum oscillations

L/E must be right

- Experimental parameters: E, L
- Theory parameters: Δm^2 , θ

•
$$P_{\alpha\beta} = \sin^2 2\theta \sin^2 \left[1.27 \ \frac{\Delta m^2}{\text{eV}^2} \frac{L/E}{\text{m/MeV}} \right]$$

Vacuum oscillations

L/E must be right

- Experimental parameters: E, L
- Theory parameters: Δm^2 , θ

•
$$P_{\alpha\beta} = \sin^2 2\theta \sin^2 \left[1.27 \ \frac{\Delta m^2}{\text{eV}^2} \frac{L/E}{\text{m/MeV}} \right]$$

Exploring θ and Δm^2

To allow observation of neutrino oscillation,

- Nature has to be generous: $\sin^2 2\theta \not\ll 1$
- To probe small Δm^2 we need large L/E
- In particular, to probe $\Delta m^2 \sim 10^{-11} \ eV^2$ with $E \sim MeV$ neutrinos, we need the reactor at $L \sim 10^8$ km

Source	$E[{\rm MeV}]$	$L[\mathrm{km}]$		$\Delta m^2 [\mathrm{eV}^2]$
SN	1	10^{8}	\implies	$10^{-11} - 10^{-9}$
RN	1	10^{2}	\implies	$10^{-5} - 10^{-3}$
AN	10^{3}	10^{1-4}	\implies	$10^{-4} - 1$

Neutrinos (Mainly) from Heaven

Wolfenstein (1978); Mikheev and Smirnov (1985)

Matter Effects

• In vacuum, in mass basis
$$(\nu_1, \nu_2)$$
: $H = p + \begin{pmatrix} \frac{m_1^2}{2E} & 0\\ 0 & \frac{m_2^2}{2E} \end{pmatrix}$

• In vacuum, in interaction basis (ν_e, ν_a) :

$$H = p + \frac{m_1^2 + m_2^2}{4E} + \begin{pmatrix} -\frac{\Delta m^2}{4E}\cos 2\theta & \frac{\Delta m^2}{4E}\sin 2\theta \\ \frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta \end{pmatrix}$$

• In matter (e, p, n), in interaction basis (ν_e, ν_a) :

$$H = p + V_a + \frac{m_1^2 + m_2^2}{4E} + \begin{pmatrix} (V_e - V_a) - \frac{\Delta m^2}{4E} \cos 2\theta & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & \frac{\Delta m^2}{4E} \cos 2\theta \end{pmatrix}$$

• All active neutrinos have NC interactions, but only ν_e has CC interactions with matter: $V_e - V_a = \sqrt{2}G_F n_e$

 ν_e only

 $u_a, \quad a = e, \mu, \tau$

(i)
$$\theta_m \neq \theta$$

• The mixing angle relating (ν_e, ν_a) to (ν_1^m, ν_2^m) depends on the matter density:

$$\tan 2\theta_m = \frac{\Delta m^2 \sin 2\theta}{\Delta m^2 \cos 2\theta - 2\sqrt{2}G_F n_e E}$$

• Example:
$$\sqrt{2}G_F n_e \gg \frac{\Delta m^2}{2E} \implies \theta_m \to \pi/2$$

 $\implies \nu_e$ is very close to the heavier mass eigenstate ν_2^m

$$(ii) \ \theta_m = \theta_m(t)$$

For a neutrino propagating in varying density $n_e(x)$

- The mixing angle changes: $\theta_m = \theta_m(n_e(x))$
- $\tan 2\theta_m(x) = \frac{\Delta m^2 \sin 2\theta}{\Delta m^2 \cos 2\theta 2\sqrt{2}G_F n_e(x)E}$
- As $n_e(x) \downarrow : \theta_m \downarrow$
- In particular,

- At
$$n_e \gg n_e^R$$
: $\theta_m \approx \pi/2$
- At $n_e^R = \frac{\Delta m^2 \cos 2\theta}{2\sqrt{2}G_F E}$: $\theta_m^R = \pi/4$
- At $n_e = 0$ (vacuum): $\theta_m = \theta$

 ν_2^m propagating in $n_e \downarrow$ is mostly ν_e above n_e^R , and mostly ν_a below n_e^R

(*iii*) $\nu_1^m \leftrightarrow \nu_2^m$ transitions

For varying density, H = H(t),

- $e^{-iH(t)t} \neq e^{-i\int H(t')dt'}$
- Instanteneous mass eigenstates \neq eigenstates of time evolution
- The transitions $\nu_{1m} \leftrightarrow \nu_{2m}$ occur

For slowly varying density, $\dot{H}t \ll H$,

•
$$e^{-i\int H(t')dt'} = e^{-i(Ht+\dot{H}t^2+\cdots)} \approx e^{-iHt}$$

- The transitions $\nu_{1m} \leftrightarrow \nu_{2m}$ can be neglected
- The adiabatic condition: $\left| \frac{1}{n} \frac{dn}{dx} \right|$

$$\frac{1}{n}\frac{dn}{dx} \ll \frac{\Delta m^2}{E}\frac{\sin^2 2\theta}{\cos 2\theta}$$

Production with $n_e^{\text{prod}} \gg n_e^R$ $\nu = \nu_2^m (\theta_m = \pi/2)$

Neutrinos

$$E \gg \frac{\Delta m^2}{G_F \ n_e^{\rm prod}}$$

Neutrinos

$$E \gg \frac{\Delta m^2}{G_F \ n_e^{\rm prod}}$$

Approaching the surface of the Sun

$$\nu = \nu_2^m(\theta_m = \theta) = \nu_2 \implies P_{ee} = |\langle \nu_e | \nu_2 \rangle|^2 = \sin^2 \theta$$

Neutrinos

$$\frac{\Delta m^2}{\frac{1}{n}\frac{dn}{dx}}\frac{\sin^2 2\theta}{\cos 2\theta} \gg E \gg \frac{\Delta m^2}{G_F \ n_e^{\text{prod}}}$$

$$P_{ee} = |\langle \nu_e | \nu_2 \rangle|^2 = \sin^2 \theta$$

- 1. High sensitivity to θ ;
- 2. The only way to probe small angles $(\sin^2\theta\gtrsim 10^{-4} \text{ for } \Delta m^2\sim 10^{-4} \text{ } eV^2)$

3.
$$P_{ee} < \frac{1}{2}$$
 is possible
In constrast to averaged vacuum oscillations,
 $P_{ee} = 1 - \frac{1}{2}\sin^2 2\theta > \frac{1}{2}$

 $\nu = \sin\theta \ \nu_2^m + \cos\theta \ \nu_1^m$

Neutrinos

Approaching the surface of the Sun $\nu = \sin \theta \ \nu_2 + \cos \theta \ \nu_1 = \nu_e \implies P_{ee}(R_{\odot}) = 1 \implies P_{ee}(\text{Earth}) = 1 - \frac{1}{2} \sin^2 2\theta$

Neutrinos

MSW in the Sun, Qualitatively

MSW in the Sun, Quantitatively

- The Sun is a source of MeV ν_e 's
 - To have resonance: $n_e^{\text{prod}} > n_e^R = \frac{\Delta m^2 \cos 2\theta}{2\sqrt{2}G_F E}$ \implies To probe Δm^2 up to $\sim 10^{-5} \ eV^2$, we need $n_e^{\text{prod}} \sim 4 \times 10^{-25} \ \text{cm}^{-3}$
 - To have adiabatic propagation: $\frac{\Delta m^2}{E} \frac{\sin^2 2\theta}{\cos 2\theta} \left| \frac{d \ln n_e}{dx} \right|_{\text{res}}^{-1} \gg 1$ \implies To probe Δm^2 down to $\sim 10^{-9} \ eV^2$, we need $r_0 \sim 3 \times 10^9 \ \text{cm} \ [n_e(x) \approx 2n_0 \exp(-x/r_0)]$

Source	$n_0 [\mathrm{cm}^{-3}]$	$r_0[\mathrm{cm}]$		$\Delta m^2 [\mathrm{eV}^2]$
SN	6×10^{-25}	7×10^9	\implies	$10^{-9} - 10^{-5}$

Summary: What can we see?

Source	Effect	$\Delta m^2 [eV^2]$
SN	VO	$10^{-11} - 10^{-9}$
SN	MSW	$10^{-9} - 10^{-5}$
KN	VO	$10^{-5} - 10^{-3}$
AN	VO	$10^{-4} - 1$

• If $\theta \ll 1$, we should be able to discover neutrino masses in the entire theoretically interesting range: $10^{-11} eV^2 < \Delta m^2 < eV^2$ • If $10^{-2} \lesssim \theta \ll 1$ we could still discover it via the adiabatic MSW effect for $\Delta m^2 \sim 10^{-5} eV^2$

<u>Next</u>

What do we see?

 $\nu_1^m \leftrightarrow \nu_2^m$ transitions $\begin{pmatrix} \nu_e \\ \nu_a \end{pmatrix} = \begin{pmatrix} \cos \theta_m & \sin \theta_m \\ -\sin \theta_m & \cos \theta_m \end{pmatrix} \begin{pmatrix} \nu_1^m \\ \nu_2^m \end{pmatrix}$ $\frac{\partial}{\partial t} \begin{pmatrix} \nu_e \\ \nu_e \end{pmatrix} = \dot{U}(\theta_m) \begin{pmatrix} \nu_1^m \\ \nu_2^m \end{pmatrix} + U(\theta_m) \begin{pmatrix} \dot{\nu}_1^m \\ \dot{\nu}_2^m \end{pmatrix}$ $i \begin{pmatrix} \dot{\nu}_1^m \\ \dot{\nu}_2^m \end{pmatrix} = \frac{1}{4E} \begin{pmatrix} (m_1^m)^2 - (m_2^m)^2 & -4iE\dot{\theta}_m \\ \frac{4iE\dot{\theta}_m}{2} & (m_2^m)^2 - (m_1^m)^2 \end{pmatrix} \begin{pmatrix} \nu_1^m \\ \nu_2^m \end{pmatrix}$ $\dot{\theta}_m(t) = \frac{\sqrt{2G_F E \Delta m^2 \sin 2\theta} \ \dot{n}_e}{[(m_e^m)^2 - (m_e^m)^2]^2}$

Neutrinos

II1/117