New Trends in Fusion Research Ambrogio Fasoli

Centre de Recherches en Physique des Plasmas Ecole Polytechnique Fédérale de Lausanne *and MIT –USA*

CERN Academic Training Programme

11-13 October 2004

Credits and acknowledgments EFDA, CRPP, MIT-PSFC, PPPL, LLNL, SNL, IFE Forum, US-DoE, ILE Osaka, ESA, NASA, LLE, UCB, UKAEA, with apologies to the many authors from whom I have 'stolen' viewgraphs EUROPEAN FUSION DEVELOPMENT AGREE EUROPEAN FUSION DEVELOPMENT AGREE

Lay-out of the course (can still be changed!)

- Mon Oct. 11 –*1h*
 - Fusion basics, Lawson criterion, plasmas, confinement schemes
 - Inertial confinement fusion
- Tue Oct 12 –2*h*
 - Magnetic confinement: principles and general challenges
 - The tokamak
 - Heating and current drive
 - Macroscopic equilibrium, stability, operational limits, disruptions
 - Plasma-wall intereaction
- Wed Oct 13 –2*h*
 - Plasma diagnostics
 - Transport of energy and particles
 - The burning plasma regime
 - The future: ITER, the world burning plasma experiment

Web links

- Plasma physics lectures at EPFL http://crppwww.epfl.ch/lectures/
- CRPP-EPFL http://crppwww.epfl.ch
- EFDA http://www.efda.org
- JET http://www.jet.efda.org
- ITER http://www.iter.org
- A useful US-based site with many fusion links http://www.fire.pppl.gov

Lay-out of lecture 1 (today)

Fusion basics

- Energy needs
- Urgency of alternates to fossil fuels: scarcity, environmental issues
- Plasmas
- Why *thermo*-nuclear fusion? Coulomb collisions in plasmas
- Fusion energy balance: Lawson criterion, breakeven and ignition
- Confinement schemes
- Inertial confinement fusion (*the view of a non-expert*)
 - Direct drive
 - Indirect drive
 - Drivers: lasers, ion beams, X-ray (Z-pinch)
 - Fast ignition

Growth of world population and energy demand

Energy demand grows even faster than world population

Unequal distribution of energy consumption

1

Reliance on fossil fuels

Fossil Fuels have been produced from decayed plant and animal matter over millions of years, cannot be re-formed in time

R.W.Bentley et al., Perspectives on the Future of Oil, Vol. 18, Nos. 2&3 2000, MULTI-SCIENCE PUBLISHING CO. LTD., 107 High Street, Brentwood, Essex, CM14 4RX, UK.

Urgency of alternates development Oil geographical distribution

(source BP statistical review 2002)

Urgency of alternates development Environmental impact (CO₂ and global warming)

CO₂ is prime greenhouse gas

Modelling global warming

The effects of climate change

Ambitious goal for 2050 (when total world power market predicted to be 30TW)

Limit CO₂ to twice pre-industrial level: will need 20 TW of CO₂-free power (today's world total power market is 13 TW)

US DoE "The technology to generate this amount of emission-free power does'nt exist"

Urgency of alternates development Scarcity of resources: related to CO2 limitations

"BEST-PLAUSIBLE-HOPE" PROJECTION: 5 TW OF NEW NON-FOSSIL ENERGY SOURCES NEEDED BY 2030 (e.g., SOLAR, ADVANCED FISSION, FUSION)

Alternative energy sources Nuclear Fission

- Long lived radioactive waste products (many thousands of years) that require transportation, re-processing and geological storage
- Public concerns on safety

Alternative energy sources Renewables

Renewables (wind, wave, solar, hydro) are the most attractive option at present and offer long term, clean energy reserves

However :

•Low energy density

•Fluctuations in time require storage systems

Ex.: Contribution to electricity of wind energy in 2002

Country or region	Cumul. installed (GW) 2002	share of electricity by wind
Germany	12	4%
Spain	5	5.5%
Denmark	2.8	18.5%
EU	24	2%
US	4.7	0.3%
Total World	32	0.45%

Going to 20% of electricity in EU (240GW) would mean 1500 big wind parks

Horns Rev in Denmark: 160 MW (80 mills)

Thermonuclear Fusion

Fusion reactions

electricity

Schematic of a fusion power plant

Advantages of fusion energy

- High energy density fuel
 1g D-T →26000kW-hr (1g coal→0.003kW-hr)
- Abundant fuel, available everywhere
 - D is 1/6500 of H (OK for 10¹⁰ years)
 - Li is 17ppm of crustal rock (OK for 10³ years)
- Environmental
 - no CO₂ emission
 - no high-level radioactive wastes
- No risk of nuclear accidents (<5min of fuel in reactor)
- No generation of weapons material
- Geographically concentrated, little use of land
- Not subject to local or seasonal variations

Comparison of activation in fusion and fission reactors

T~10keV: matter is under the form of plasma Definition of a plasma

- Ensemble of changed particles, globally neutral

- Exhibiting collective behaviour

 $\phi(r) = \frac{e}{4\pi\varepsilon_0} \frac{1}{r} \exp\left\{-\frac{r}{\lambda_D}\right\} \qquad \lambda_D = \sqrt{\frac{T}{n_0 e^2/\varepsilon_0}}$

• Local response to violation of neutrality Static: screening of charge Debye length λ_{D}

Dynamical: plasma oscillations

$$\omega_p = \frac{1}{\tau} = \sqrt{\frac{e^2 n}{\varepsilon_0 m}} \quad \text{``plasma frequency''}$$

Examples of plasmas

Why *thermo*-nuclear fusion ? A note on collisions in plasmas

- Short range Charged particles neutrals (ionisation)
 inelastic Nuclear (fusion reactions)
 - Nuclear (fusion reactions)
- Long range ~ elastic
- Charged particles charged particles (Coulomb)
 - Approximate many interactions within the Debye sphere with binary interaction, consider all possible collisions and average

 b_{90} : impact parameter for deflection of 90^{0}

Coulomb collisions: cumulative effects and effective collision frequencies

- Consider all scatterers, integrate over b and particle distribution
- Ex. effective collision frequency for energy exchange

$$\bar{\nu}_{E_{k}}^{e/i} = \frac{1}{E_{k}} \int f_{e}(\mathbf{v}_{e}) d^{3}v \underbrace{\int_{b_{min}}^{b_{max}} \frac{m_{e}v^{2}}{2} \frac{m_{e}}{m_{i}} \left(\frac{2b_{90}}{b}\right)^{2} n v 2\pi b db}_{\int_{b_{min}}^{b_{max}} \Delta E_{k} n v d\sigma} = \frac{dE_{k}}{dt} \quad Hotter \rightarrow less \ collisional$$

$$K = \frac{2}{3} \sqrt{\frac{2}{\pi} \frac{Z^2 e^4 m_e^{1/2}}{4\pi \varepsilon_0^2 m_i}} \ln \Lambda , \qquad \Lambda \equiv \int_{b_{\min}}^{b_{\max}} \frac{db}{b} , \qquad \text{`Coulomb logarithm''}$$

• We are considering only small angles

$$\implies \qquad b_{\min} \simeq max\{b_{90}, \lambda_{\text{DeBroglie}}\} \tag{7}$$

• Due to the Debye screening effect, outside the Debye sphere the potential is screened, so the Coulomb collisions are no more effective

$$\implies b_{\max} \simeq \lambda_D.$$
 (8)

Coulomb collisions: plasma resistivity

$$\eta = \frac{\sqrt{2}}{\pi^{3/2}} \frac{m_e^{1/2} Z e^2 \ln \Lambda}{12 \varepsilon_0^2 T_e^{3/2}} \propto T_e^{-3/2}$$

Resistivity - quantitative estimates

- 1. Plasma at 100 eV: $\eta \sim 6 \cdot 10^{-7} \ \Omega m \ [\sim \eta \ of \ stainless \ steel]$
- 2. Plasma at 1 keV: $\eta \sim 2 \cdot 10^{-8} \Omega m [\sim \eta \text{ of copper}]$
- 3. For $T\gg 1~{\rm keV}$ plasma becomes almost superconducting

Observations The decrease of resistivity with temperature has two important consequences:

- 1. Magnetic flux is 'frozen' within plasma (e.g. solar wind carrying B-field with it)
- 2. Heating by current ('ohmic heating') becomes less and less effective at high T_e .

Coulomb collisions: characteristic time scales

• Ex. H plasma, $T_e = T_i = 10 \text{keV}$; $n = 10^{20} \text{ m}^{-3}$

For momentum exchange and equilibrium within one species $\tau_{p,Ek}^{e/e} \sim 0.2ms;$ $\tau_{p,Ek}^{i/I} \sim 10ms$

For thermal equilibrium between the two species $\tau_{Ek}^{e/i} \sim 0.5s$

Coulomb collision σ is much larger than fusion σ for all energies

Fusion reactors must deal with 'thermal' plasmas

The Lawson criterion: energy production

- Fusion power density $\equiv P_f$

 $= n_{D} n_{T} < \sigma v > E_{f} ; E_{f} = 17.6 MeV$ = $\frac{1}{4}n^{2} < \sigma v > E_{f} (n_{D} = n_{T} = n/2)$

- Of this, 20% is in the α 's: $P_{\alpha} = P_f/5$

- <σv> is the rate at which fusion reactions take place ('thermonuclear' fusion: we can average over Maxwellian distributions of D and T)
 - Ex.: n=5×10²⁰ m⁻³, max(< σ v>)
 - To have P_f~1 GW we need a volume V~6 m³
 - If only it was so easy....

The Lawson criterion: losses

- Losses
 - Thermal energy density
 - W=3nT is lost over characteristic time τ_E : P_{loss} =W/ τ_E
 - Bremstrahlung radiation
 - $P_b = A Z^2 n^2 T^{1/2}$ (X-rays)
 - Cyclotron emission
 - $P_{cycl} = C nT B^2$ (micro-waves)
 - but ~only for electrons, and mostly reabsorbed by plasma either directly or after reflection from metal walls → negligible

Assumptions

- Plasma is pure 50:50 D-T
- Efficiency of conversion of thermal energy into electricity= η_1
- Efficiency of conversion of electricity into plasma heating = η_2
- Total efficiency $\eta = \eta_1 \eta_2$
- The power density re-injected in plasma is $\eta(W/\tau_E + P_b + P_f)$

The Lawson criterion: breakeven
Breakeven: Power reinjected = Losses

$$\eta(\mathbf{W}/\tau_{\mathrm{E}} + \mathbf{P}_{\mathrm{b}} + \mathbf{P}_{\mathrm{f}}) = \mathbf{W}/\tau_{\mathrm{E}} + \mathbf{P}_{\mathrm{b}}$$

The Lawson criterion: ignition

• If α 's are confined, external heating is not needed (and bremstrahlung can be neglected) if $P_{\alpha} = W/\tau_E$

Ignition
condition
$$n \tau_E = \frac{3T}{\frac{\langle \sigma v \rangle}{4} E_{\alpha}} = fct(T)$$

conjinemeni

- Ignition condition $\leftarrow \rightarrow$ efficiency $\eta = 1/(1+E_{\alpha}/E_{f}^{\text{total}})=0.136$
- Fusion energy gain: $Q \equiv P_{fusion}/P_{heat} = 5 P_{\alpha}/P_{heat}$
- α heating fraction: $f_{\alpha} \equiv P_{\alpha}/(P_{\alpha}+P_{heat})=Q/(Q+5)$

Q=1	f _α =17% breakeven	
Q=5	f _α =50%	burning plasma
Q=∞	$f_{\alpha} = 100\%$ ignition	01
Need	$n \tau_E \sim 10^{21} m^{-3} s at T \sim 10 keV$	

neaing

Plasma confinement

- Magnetic $n \sim 10^{20} \text{ m}^{-3}$ $\tau_E \sim 10 \text{ s}$
- Inertial $n \sim 10^{31} m^{-3}$ $\tau_E \sim 10^{-10} s$
- Need to confine and heat the plasma

Inertial Confinement Fusion

- A capsule with D-T is irradiated by lasers, X-rays, or particle beam

- Compression: need ~ 10^{12} bar to reach 10^{31} m⁻³
 - Laser with $10^{16} \text{ W/cm}^2 \rightarrow p_{\text{light}} \sim 10^6 \text{ bar, largely insufficient}$
 - Shock waves at the pellet surface, arriving at the center at the same time
 - Once fusion starts, α heating sustains the reactions
- Heating to ignition must occur before ions fly away
 - Energy flux F: $\tau_{heat} = U_{th} / (4\pi R^2 F)$; $U_{th} = 3nT(4/3\pi R^3)$ $\tau_{heat} < \text{inertial time} = R/v_{sound}$ (~100ps) $\rightarrow F > nT^{3/2}/m_i^{1/2} \sim 5 \times 10^{15} \text{ W/cm}^2$

ICF: general issues

- Uniformity, stability of compression
 - Rayleigh-Taylor hydro-dynamic instability
 - Low density vaporised shell pushes high density D-T ice layer
 - Magnifies surface irregularities and may prevent ignition

- Capsule design
- Efficiency of drivers
- Steady-state: extension of techniques from single pulse to many repetitive pulses for energy production
- Materials for first wall
 - Long lifetime, low induced radio-activity, ...
- Optimisation to reduce cost and increase efficiency

ICF: direct and indirect drive

Indirect drive

Hohlraum

ICF – direct drive: ex. of results Initial 2D hydrodynamic simulations show good agreement with experimental α =4 cryogenic target results DRACO code simulated density contours $\alpha = 4$ pulse. 17 kJ 100-µm thick ice layer Density near peak burn 8-µm rms ice roughness 28969 200 Density (q/cm^3) 18.4 150 12.3 R (µm) 6.1 100 0.0 Expt 1-D 2-D 5.95×10^{9} 5.60×10^{10} 5.32×10^{9} Yin 50 Y₂ 6.75×10^{7} 6.94×10^{8} 6.31×10^{7} $<\rho R>$ 67 80.058 Tion 2.51.7 2.00 -100-500 50 100 T.C.Sangster et al. Phys. Plasmas 10, $Z (\mu m)$ 1937 (2003 Low α -pulse High α -pulse I A $\alpha = P_{\text{fuel}}/P_{\text{Fermi}}$ P_{Fermi}=Fermi degenerate pressure **Good stability** High gain

ICF – indirect drive: issues

- Ex. of avenue for optimisation: higher holraum T \rightarrow higher p, implosion velocity, compression \rightarrow ignition with less energy

ICF – laser drive: the US NIF project

ICF – laser drive developments

- Today's laser drivers are limited for power plant use by
 - Efficiency (should be >5%)
 - Repetition rate (should be >0.1Hz)
 - Damage to injection windows/mirrors by heat, n, debris
- New laser developments
 - Diode-Pumped Solid-State Laser Driver
 - Diodes instead of flashlamps to pump a solid-state laser could permit rapidly repeated firings, efficiency needed for power generation
 - Ex. Mercury laser at LLNL should reach: 100J, 10Hz, 10% efficiency, 3ns
 - Krypton-Flouride Gas Laser Driver
 - With the KrF laser (0.248µm), the laser medium is a gas that can be circulated for heat removal to achieve high repetition rate
- Other driver methods
 - Ion beams (indirect drive)
 - High rep rate z-pinches

ICF – ion beam indirect drive

and

Injector

- Heavy ion beams
 - Ions hit target, energy gets converted into X-rays that compress pellet
 - Ex. Cs ions, 400 TW
- Challenges
 - Beam transport, space-charge, emittance
 - Pulse compression
 - Focus and deposition depth (light vs. heavy ions)
 - Cost, but one accelerator could drive many target chambers

ICF – heavy ion beam target

- Similar issues to laser drive
 - Stability, ignition and burn propagation, symmetry control

ICF – heavy ion driver: future developments

The heavy ion fusion program plans consists of distinct experiments on ion sources, beam transport, and focusing to be followed by an integrated beam experiment

ICF – drive by X-rays from z-pinch

- Ex. Sandia NL
 - 360 tungsten wires $(\sim 1/10 \text{ of human hair})$ collapse, evaporate, form a plasma in high current pulse
 - Plasma emits X-rays: T~150eV E~2.0MJ P~100TW
 - Next generation: (Sandia) ~16MJ?
- X-rays-Z -machine

Z machine

Implosion

Emission

ICF – drive by X-rays from z-pinch Progress in the symmetry of implosion of targets driven by indirect drive from double z-pinch Radius vs. time

R

а

d

i

u

S

G. Bennett, M. Cuneo, R. Vesey

ICF: fast ignition

- Conventional ICF
 - D-T gas compressed by imploding solid
 D-T must form fusion 'hot spot', igniting and generating symmetrically propagating burn
 - Even if implosion is uniform, if hot spot is not symmetric, it squirts out, mixes with colder D-T and burn is prevented
- Fast ignition
 - Idea: decouple compression and ignition
 - No need for hot spot: at max compression, a very short (<10⁻¹¹s) power pulse is injected on the side
 - →lower energy, inexpensive drivers could be used for simpler task of compressing fusion fuel if no need for a hot spot

ICF: fast ignition may give higher gain

FI at NIF

Fast ignition is compatible with all drivers

ICF – fast ignition: promising results?

Enhanced neutron output from fast heating of deuterated direct drive shell implosion on Gekko XIII laser (Japan,UK) R. Kodama, et al., Nature 412, 798 (2001)

1.2 KJ compression pulse + 60 J, 100 tw fast heating pulse

Green lasers, t = 1-2 nsec. ~10¹⁴ W/cm²

1 μm laser, t=0.5ps ~10¹⁹ W/cm²

ICF – FI medium term development in Japan

FIREX (Fast Ignition Realization Experiment)
Purpose: Establishment of fast ignition physics and ignition demonstration
Starting Conditions: high density compression (already achieved)
heating by PW laser (1keV already achieved)

The overview of FIREX-II

Heating laser 50 kJ pulse width 10 ps implosion laser 50 kJ

Foreseen ICF development steps (US view)

Summary of progress in inertial fusion

1

After J. Lindl et. al., 1995, Physics of Plasmas, Vol. 2, No. 11, p. 3933

Progress in magnetic fusion

Fusion Triple Product - density (particles/m³) x confinement time (s) x Temperature (keV)

ICF – indirect drive: ignition plan on NIF

Hope from fast ignition roadmap towards a reactor in Japan

ICF systems under development

Table 1: List of Major ICF Driver Facilities and Their Operating Parameters (Table Includes both Operating and Planned Facilities)					
Location	Driver	Operating Parameters	Neutron Production per Shot		
Sandia National Laboratory (USA)	PBFA-II (light ion beam)	36 Beams 100 TW (design) 10 TW (actual)	Unknown		
Sandia National Laboratory (USA)	Z-pinch	2 MJ 290 TW 140 eV	D-T target not used yet.		
Sandia National Laboratory (USA)	X-1 (successor to z-pinch) (Conceptual Design)	16 MJ 1000 TW	Projection Unknown		
Europe	Heavy Ion Design for Ignition Facility (HIDIF) (Conceptual Design)	48 Beams 1 MJ 27 TW	Projection Unknown		
Lawrence Livermore National Laboratory (USA)	NOVA laser	10 Beams ~40-70 kJ ~100 TW	10^8 -3.6x10 ¹³		
Lawrence Livermore National Laboratory (USA)	National Ignition Facility (NIF)	192 Beams 1.8 MJ ~360 TW	10 ¹⁹ (projected at max 20 MJ yield scenario)		
Osaka (Japan)	GEKKO-XII	12 Beams 15-30 kJ 0.1-10 ns	10 ¹³		
Osaka (Japan)	Kongoh (Under Design)	92 Beams 300 kJ 100 TW	?		
Bordeaux (France)	Laser Mégajoule	1.8 MJs 120 TW	Same range as NIF		
VNIIEP (Russia)	Iskra-5	12 Beams 15 kJ 0.25 ns	?		

Long term development of z-pinch

The long-range goal of Z-Pinch IFE is to produce an economically-attractive power plant using high-yield z-pinch-driven targets (~3 GJ) at low rep-rate (~0.1 Hz)

Z-Pinch IFE DEMO (ZP-3, the first study) used 12 chambers, each with 3 GJ at 0.1 Hz, to produce 1000 MWe

Control of hydrodynamic instabilities and laser imprint determine key features of laser direct drive targets

