
11 LCG Application Area Meeting 28-Jan-2004

Report on the
Conditions Database Workshop

(CERN 8-9 Dec. 2003)

Andrea Valassi
(CERN IT-DB)

http://lcgapp.cern.ch/project/CondDB/

22 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Where the Workshop comes from
• Feb.2000: “CondDB Interface Specification Proposal” by Pere Mato (LHCb)
• Feb.2000-Sep.2000: Requirement collection by Stefano Paoli (IT-DB)

– Emphasis on functional requirements and definition of common C++ API
– Active participation by many experiments (Harp, Compass, LHCb, Atlas…)
– Earlier experience in BaBar and RD45 taken into account

• Oct.2000–Oct.2001: Objy implementation by Stefano Paoli et al. (IT-DB)
– Used for Harp data-taking in 2001-2002, evaluated for Compass data-taking

• Mar.2002-Aug.2002: Oracle implementation by Emil Pilecki (IT-DB)
– Harp data migrated from Objy to Oracle in Nov. 2003 (keeping the same API)

• Jun.2002-Dec.2003: MySQL implementation by Jorge Lima et al. (Atlas)
– More requirements collected from Atlas users, leading to API extensions
– Used by Atlas for test beam data-taking since June 2003

• May 2003: “Proposal to bring CondDB into LCG AA” by Pere Mato
– LCG Conditions Database project launched within the Persistency Framework

• Dec 2003: LCG Conditions Database Workshop at CERN

33 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Workshop Agenda (1.5 days)
• Introduction and review of CERN ‘common API’ projects

– Introduction (Dirk Duellmann) and Common API (A.V.)
– Oracle implementation and tools (A.V.)
– MySQL implementation and tools (Luis Pedro)

• Conditions DB projects at past/present experiments
– Babar (Igor Gaponenko)
– Harp (Ioannis Papadopoulos)
– Compass (Damien Neyret)
– CDF/D0 (Jack Cranshaw)

• Input from the LHC experiments (online and offline)
– Atlas (Richard Hawkings, Joe Rothberg, Lorne Levinson, David Malon)
– CMS (Frank Glege, Martin Liendl)
– LHCb (Pere Mato, Clara Gaspar)

• Summary

http://agenda.cern.ch/fullAgenda.php?ida=a036470

44 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

The ConditionsDB in a Nutshell

• The common API was designed to handle data “objects” that
– Can be classified into many independent data items
–– VARY IN TIMEVARY IN TIME
– Can have many different versions (for a given time and data item)

Pere Mato (Feb 2000)

A “CondDBObject”
 A CondDBObject has

– Metadata:
• Data item identifier
• Start-of-time-validity
• End-of-time-validity
• Version number

– Data:
• Actual condition data

55 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Common API features

• Data item classification
– Data items organized in “folders” identified by name “/SlowControl/Ecal/Mod1”

• Versioning and tagging
– Different versions of an object with the same validity may exist
– A consistent set of objects with different versions may be tagged (CVS HEAD)

• Time axis is 64-bit integer
– Intervals have validity range [since, till) and are looked up by validity point
– Condition data and event data are loosely coupled by design

• Condition data stored separately and looked up by relevant event time

• Physical storage and partitioning
– Common conventions and directives missing in the API

• Data content: string/blob
– Flexible but cumbersome and often not optimal

• Design driven by metadata model
– C++ API implemented using both ODBMS (Objy) and RDBMS (Oracle, MySQL)

66 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Oracle implementation
• Developed by Emil Pilecki in IT-DB in spring 2002

– Essentially frozen on August 2002 status (Emil left the group in late 2002)
– Minor ad-hoc changes by A.V. for Harp migration in November 2003

• Oracle 9i implementation issues
– Purely relational data model, no object features
– Client access through OCCI library (more user friendly than OCI)

• Concern for Linux: library only released for gcc2.9x, no gcc3.2 version yet
– Use of PL/SQL stored procedures, materialized views, indices

• Performance still far from optimal
– Bulk retrieval of BLOB data not yet implemented
– Bulk insertion of BLOB data not yet implemented

• Needs deeper reengineering (now HEAD versioning forces use of autocommit)

• Strict conformance to original common API
– Only minor changes to user code in Harp migration from Objy to Oracle
– Data migration using export/import to binary files (tools can be readapted)

77 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

MySQL implementation
• Continuous development (Atlas Lisbon) since summer 2002 to-date

– 0.2.x (Aug 2002): implementation of original API, very fast and promising
– 0.3.x (Apr 2003): API extended, PVSS “tiny object” support (~native int/float)
– 0.4.ß (Dec 2003): API extended, “CondDBTable” (complex relational data)

• Ongoing effort to integrate with POOL (timescale: May 2004)
– Performance improvements in each release
– Also include many useful tools (PVSS interface, data browser…)

• “Far beyond the BLOBs”: 7 types of data storage in 0.4.ß
– BLOBS (with/without versioning)
– CondDBTable (with/without versioning)
– CondDBTable with Id (with/without versioning)
– POOL and ROOT

• Development driven by Atlas user requests
– 2003 test beams (using PVSS tiny objects)
– 2004 combined test beam (using CondDBTable)

88 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

BaBar’s “CDB” (1)
• Conditions Database was fully redesigned while in data-taking

– Design started summer 2001, in production since October 2002
– “Our dissatisfaction with the older database grew as our experience did”
– Migration from older database was “half evolution, half revolution”

• The data model and its implementation
– Design driven by user metadata model: forget “nice features” of Objy, Oracle…

• Implementation in production uses Objectivity as persistent backend
– Metadata model very very similar to that used by CERN common API projects

• Condition objects live in 2D space validity-time vs insertion-time (version)
• “Revision” (insertion-time high watermark) more intuitive concept than “tag”
• Validity-time axis defined using special BdbTime class

– Separation of metadata and “payload” (actual data)
• Metadata has links to existing user objects
• No reverse link: the data itself does not know its validity

– Data partitioning fully addressed by the logical model of the data
– C++ API is 95% technology independent

99 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

BaBar’s “CDB” (2)
• Distributed database

– Distributed model defines masters and slaves
– Export and import is possible on individual partitions

• Usage patterns and statistics
– Total number of condition items: ~500

• Slowly updated (loaded by hand): alignment, materials…
• Frequently updated (loaded automatically ~once per run): calibrations…

– Total number of condition objects (user payload): ~1M
• Using ~400 persistent user classes

– Total size of the conditions database: ~43 GB

• My comments
– A lot of useful material (presented over the phone at midnight SLAC time!)
– Not surprisingly, many similarities to the CERN common projects
– I believe that we can still learn a lot from the BaBar experience!

1010 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Harp
• Data-taking using Objy implementation of common API

- Pro: flexible C++ API easily integrated into software frameworks
- Pro: Objectivity used for event data persistency, no need for special service
- Pro: “excellent interaction with development team” in CERN-IT/DB
- Con: performance concern for slow-control data
- Con: Objectivity-related problems (physical storage, schema changes)

• Data sources
– Online: beam/detector controls (from PVSS, LabView…)

• Total size ~ 15 GB (rate ~ 2kB/min, compare to 250MB/min event data)
• Asynchronous writing process through intermediate ASCII files
• All data classes streamed to string

– Offline: channel mapping, calibration, alignment
• Condition objects: ASCII files (names stored in conditions database)

• Data migrated to Oracle implementation of the same API
– Harp was the only production user for Objy and is so far for Oracle too

1111 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Compass
• Objy implementation of common API initially considered then abandoned

– Lot of work but still not usable when data taking started in 2002
– Lack of manpower
– Lack of user-friendly tools to insert data and browse contents

• File-based “FileDB” used for 2002 data-taking
– Calibration data in ASCII files
– Metadata (validity interval) hardcoded in the file names

• File names: “DetectorName~~StartOfValidity~~EndOfValidity”

• Metadata duplicated in “MysqlDB” in 2003
– Much easier bookkeeping of calibration files using an RDBMS
– Additional metadata not available in file names
– Other functionalities and tools introduced

• All 3 implementations hidden behind very simple Compass-specific API

1212 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

CDF and D0
• Both CDF and D0 chose Oracle

– Objectivity initially considered then abandoned
– Different software/schema designs using shared Oracle support at Fermilab
– Design driven by choice of persistency solution

• C++ API determined by the data structures accessed in the specific schemas
• Individual schema for each D0 detector vs. unified approach for all CDF detectors
• Emphasis on calibration data; slow control data also present but separate

– Separate online and offline servers with different optimizations
• Data replication via Oracle tools, data distribution via MySQL or text files

• Size of the project
– For each of CDF/D0: ~100 tables, ~100 GB total size (2 years)
– Estimated ~16 FTE needed (DBA, programming, detector…)

1313 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Atlas (overview)
• Conditions database is one of many databases

– Upload online data from DCS, configuration DB, online bookkeeper
– Conditions database is the main source of info for offline software

• Prototyping work and timescales
– Use Lisbon MySQL implementation of extended API
– Online: successful 2003 test-beam, looking towards 2004 combined test-beam

• PVSS data stored through direct interface, other data as strings or blobs
– Offline: focus on 2004 combined test-beam and data challenges

• Prototype variety of storage formats (native, string, blobs, complex POOL objects…)

1414 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Atlas (online)
• Test-beam data types

– Raw data from PVSS (temperatures, voltages…)
• Time stamp; Stored on change; Relational tables of numbers

– Processed data (alignment, calibration…), stored periodically
• Interval-of-Validity; Stored periodically; XML blobs

• Test-beam requirements
– Data browsing tools with plotting capabilities (via ROOT)
– Enhanced tagging and higher level interfaces
– Performance tests for data insertion and retrieval

• User (detector expert)’s point of view: need full-function RDBMS
– Internals of the Conditions DB should be accessible via queries

• “The APIs should be optional toolkits, which do not exclude direct SQL queries”
– Interval-of-Validity aware storage for opaque blobs is not enough
– Should be used for detector problem diagnosis, not only offline reconstruction
– Separation of Conditions DB and Configuration DB should be removed

1515 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Atlas (offline)
• Conditions DB scope is that of an Interval-of-Validity database

– Emphasis should be on temporal (IoV) metadata rather than on actual data
– Actual condition data may reside outside the IoV DB and be referenced by it

• “LHC experiments already know how to store complex objects”: via POOL

• Any data object may be assigned an IoV (i.e. registered in IoV DB)
– Assigning the IoV may come much later than storing the data object itself
– The role of the IoV database is to mediate access to the correct data object

• The object can be accessed also in “unmediated” way (exists independently of IoV)

• Miscellaneous requirements from common project
– Enhanced tagging mechanism (very clearly defined)
– Support tighter integration with POOL (storing POOL references in IoV DB)
– Time validity issues: time stamp vs IoV; (run,event) instead of time

• A relational backend for POOL would fit in the picture
– Conditions object definition via LCG SEAL dictionary
– Conditions data storage via LCG POOL relational backend

1616 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

CMS (overview)
• Conditions database is one of four types of databases

– Together with construction DB, equipment mgmt DB, configuration DB

• Two scopes for the Conditions DB
– Offline reconstruction
– Online error tracking of detector
– Keeping in mind that the online data volume is much larger

• CMS wish list from the Conditions DB project
– The implementation shall be relational (and RDBMS tools/features fully used)
– Data management and data handling tools are needed

• CMS has no experience with the current API implementations
– Are there any alternatives to a classical API?

• Manpower situation in CMS databases is very difficult
– But a Conditions DB must be available for 2005 test-beams and possibly sooner

1717 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

CMS (core sw issues)
• Different types of conditions data

– Simple (raw data from measurements): no versioning
– Processed (computed): needs versioning (as well as algorithm metadata)

• Framework integration issues
– Read conditions data relevant to event analyzed (synchronization)

• Synchronization means retrieval of pointer to relevant condition data objects
• “Dereferencing” the pointers depends on the choice of storage technology

– Store condition data computed by algorithm executed
• Only needed for conditions data computed from event data

– Data distribution from Tier0 to TierN and viceversa
– Offline is more object-oriented, online more data-oriented (RDBMS)

• Offline (object-oriented) vs online (data-oriented, RDBMS)
– The way to solve the issue is a relational backend for POOL

• POOL shall store objects in a relational backend
• POOL shall retrieve data stored using any relational design (non-intrusive POOL)

– CMS (online) requires freedom to design relational model for condition data

1818 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

LHCb (overview)
• Conditions DB scope is only offline reconstruction

– Not intended to troubleshoot the detector or the DAQ
– Emphasis should be on (distributed) data analysis

• Prototype work in LHCb (not used in production yet)
– Started when common project launched; no work for >1 year now (no manpower)
– Emphasis on framework integration (fully transparent for the end user)

• Actual data retrieval from references stored in the Conditions DB as strings
• Data synchronization

• Requirements from the common project
– More than one implementations
– Tools for data management, replication, browsing/editing
– DB service deployment

• Part of the job is LHCb-specific
– Data contents, data sources, integration with Gaudi framework
– Develop coherent calibration/alignment procedures amongst subdetectors

1919 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

LHCb (online)
• Two completely independent users

– Experiment Control System: writes raw data into Conditions DB
• Only output, via PVSS (raw data with no versioning)

– Event Filter Farm: reads condition data to process events online
• Input and output (computed conditions data with versioning)

• A special in-memory implementation of the API is needed for EFF
– The Gaudi framework runs on the EFF using the same services and API
– But faster access to condition data than via a database is needed

2020 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

General impressions
• A very useful workshop: thanks again to all speakers/participants!

– Nice constructive atmosphere and a lot of interest (
– Occasion for different experiments/groups to compare their ideas directly
– Collection of useful reference material about other existing projects

• Requirements and points of view sometimes very different
– Not necessarily “exp. A vs exp. B” differences, also “online vs offline”

• Some problems are experiment or detector specific
– They require specific solutions and are not the common project’s job
– e.g.: experiments’ recommended conventions
– e.g.: design of specific detector data schema or application

• The “common” project should concentrate on “common” solutions
– Develop generic components/tools that can be used in more than one case
– “Factor out” from all requirements those that admit common solutions

2121 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Support for relational databases
• Large interest for relational data

– As opposed to opaque blobs, or complementary to them

• Many (online?) people also want the freedom of a full-function RDBMS
– The freedom to design and implement their own data model and schemas
– At the same time the common project can only address common solutions

(components that can be factored out: metadata model, API, common schema…)
• The rest should be done by individual detector experts (with help from DB experts)

• Some degree of agreement to move relational data support to POOL
– From both online and offline

• Even the Lisbon group showed interest in moving some functionality to POOL
– This may solve various issues and concerns

• Provide an easy way to store condition data into a (predefined) relational backend
• Allow condition data stored in ~arbitrary schemas to be seen through a common API

– But, to be implemented, this needs formal agreement from the experiments

2222 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Brief overview of other issues
• Data partitioning and replication

– API extensions as well as replication tools are needed

• Interactive data browsing
– Tools needed with query and plotting capabilities

• Improved data item addressing
– Relational rather than by simple folder names

• Versioning and tagging enhancements
– Versioning by insertion time more intuitive
– User tagging at insertion time

• Validity time issues
– Timestamps vs IoV, (run,event)…
– Synchronization layer, in-memory implementation…

• Store data other than BLOBs
– Simple data storage may be useful even if relational POOL goes on

2323 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Manpower

• Presently: 80% of an FTE (A.V)
• Lisbon developers interested in contributing

Anyone else?
(No formal signup of manpower from the experiments yet)

2424 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Workplan (Phase 0)
• Release both Oracle and MySQL implementations in LCG CVS

– In the state they are now, with own APIs and tests/examples
– With their own build system
– With basic documentation

 Timescale: by next week
– Oracle implementation pre-released today (package CondDBOracle)

• API, implementation and examples unchanged w.r.t. Emil’s 0.4.1.6 version
• Using SCRAM
• Only available for rh73_gcc2952
• http://lcgapp.cern.ch/project/CondDB/ (tag CONDDB_0_0_0-pre1)

– MySQL implementation will follow soon (Package CondDBMySQL)
• Move of master CVS repository from Lisbon to CERN
• Using autoconf/make
• For the LCG supported platforms

2525 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Workplan (Phase 1)
• Factor out API (as common dependency for both implementations)

– As close to original API as possible (a few technical issues to solve)
• Lisbon API extensions maintained in MySQLCondDB package
• Minimize hassle to existing users (mainly Atlas, also Harp and LHCb… anyone else?)

– Common tests/examples with consistent basic documentation
– Same build system (SCRAM)
– Start integration of existing tools using common API
– Start development of examples storing POOL references in the Conditions DB
– Start circulating main directions for API extensions to implement in phase 2

• Expect external input from three fronts before starting phase 2:
– Availability of Oracle OCCI libraries for rh73_gcc32

• Else: plan port of Oracle implementation to another client library (which one?)
– Formal agreement on support for relational backend to POOL

• Else: plan and rediscuss more relational support inside ConditionsDB
– Manpower allocation

 Timescale: by mid-March

2626 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Workplan (Phase 2)
• Design, circulate and agree a new common API

– Taking into account ideas expressed at the workshop and later
– Taking into account POOL software responsibilities too
– Production-version implementations for both Oracle and MySQL

• Integration with POOL
– No direct dependency, provide component that sits on both POOL and CondDB

• Tools
– Import/export across implementations
– Data browsing

• Package-specific issues
– Oracle: improve performance by partial reengineering
– MySQL: continue to support existing users, keep in mind schema evolution

 Timescale: a few months
 Also depends on POOL workplan, news from Oracle and manpower

2727 Andrea Valassi IT-DB LCG AAM, 28-Jan-2004ConditionsDB WS Report

Conclusion
• A very useful workshop: thanks again to all speakers/participants!

• Expect input on a few unresolved issues
– Oracle OCCI libraries
– Relational backend support in POOL workplan
– Manpower

• Work has started according to the project workplan

• Suggestions, ideas, requirements are always welcome!
– Sign-up to contribute to the project
– Express your interest in using existing code and influence the next version
– E-mail Andrea.Valassi@cern.ch or project-lcg-peb-conditionsdb@cern.ch

