Geant4 - release 6.0 Highlights of major developments & improvements

Gabriele Cosmo, CERN for the Geant4 collaboration

Outline

- Relevant developments in Geant4 5.x releases
- Developments, Improvements and Fixes in 6.0
 - > Kernel
 - Physics Processes
 - Physics Lists
- Major items for migration of users' code

Caveat:

Details: <u>http://cern.ch/geant4/source/ReleaseNotes4.6.0.html</u> **#** Attributions are not mentioned

Relevant developments in 5.0 - 5.2

Geant4 5.0 (December 2002)

- Design review of geometry importance biasing & scoring module
- First version of "model-based" EM standard processes
- New theoretical hadronic models for the cascade energy range (100s
 MeV ~5 GeV): Binary cascade and Bertini cascade

Geant4 5.1 (April 2003)

- Addition of cuts per region

Geant4 5.2 (June 2003)

- Improvements of cuts per region
- Performance optimization in field
- Testing and refinements to "model-based" EM standard processes
- Review of the pion reaction cross-sections

Geant4 6.0 - general picture

- New capabilities in Geant4 6.0 for HEP
 Latest Physics lists distributed 'inside'
 - **#** EM-std new 'model' implementation by default
- 2. Highlights of improvements
 - **#** to existing physics modeling & models;
 - # in physics process implementations;
 - **#** in functionality
- H The high level of user feedback is reflected in developments, fixes & improvements

Kernel: Run Manager

- Design review of the Run-Manager
 - ✓ Modularization
 - Separation of 'mandatory behavior' into G4RunManagerKernel class
 - ✓ Additional entries for event processing
 - Taking HEPMC events / track vectors
 - ✓ New mechanism for merging different kinds of primaries
 - Maintain link between pre-assigned decay products and corresponding primary particle
- New user "helper" classes
 - G4StackChecker, G4VUserPrimaryVertexInformation, G4VUserEventInformation, G4VUserRegionInformation, G4VUserPrimaryParticleInformation

Kernel: Geometry

- Logical reorganization and restructure of modules
 - Code review to reduce internal dependencies
- Abstraction of G4Navigator
 - First level abstraction
 - Consolidation of the interface
- Addition of volume Divisions
 - G4Box, G4Tubs, G4Cons, G4Para, G4Trd, G4Polyhedra, G4Polycone
 - Extends capability of Replicas (offsets available)
- Solids:
 - New G40rb shape
 - Review of 'safety' in Boolean & CSG solids
 - Fixes in **G4sphere** for usage of 'tolerance'
 - Review of algorithm for phi sections

G.Cosmo - LCG Application Area meeting

Kernel: Propagation in EM Field

- Ability to specialize integration accuracy
 - $\diamond \mathbf{E}_{min}, \mathbf{E}_{max}$ now for each Field-Manager
- Choice of Field-Manager by track
 - ✤ e.g. more precise for muon or for tracks E>5 GeV
- Ability to use variant Chord-Finder (5.2)
 To enable possibility for performance improvement
- Fixes for missing intersections
 - Missing chord & repositioning in rare conditions
- Further usage of 'safety' in field propagator
 * Possibility to turn on/off the optimization

EM Physics Processes

- New "model-based" EM standard physics processes are now the default
 - model approach for energy loss and MSC
 - we can more easily maintain and modify them
 - to enable the easy use of different models for a single process (e.g. ionization) in one application
 - previous user-interface unchanged
- The old (frozen) implementation is still available
 with '52' postfix in the process class name

EM Physics Processes & more ...

- Multiple scattering
 - Tuning for tail of angular distribution
 - Improvement for muons of E>1 PeV
- Ionisation
 - Updated energy intervals, fluctuation models ...
 - Multiple scattering does not use table
 - Needed to ensure repeatability
 - Added PAI (Photon-Absorption-Ionisation) model
- EM low energy physics
 - New models (2BN, 2BS) for Bremstrahlung
 - New processes for electrons & positrons (a-la Penelope)
- Optical processes
 - New process for wavelength shifting
 - Adoption of G4SurfaceProperty class for materials

G.Cosmo - LCG Application Area meeting

Hadronic Physics: general

- Design iteration for hadronic framework
 - to allow for direct implementation of biasing at the framework level
- New implementations
 - leading particle biasing for any reaction
 - cross-section biasing for e-/N and γ /N reactions
- Restructure of the hadronic code modules
 - simplification of the structure
- Fixed compilation warnings

Hadronics: Cross Sections & Models

- Binary cascade:
 - included pion projectiles
 - added light ion reactions
 - improved transition to pre-equilibrium model
- Bertini Cascade: extended up to 10 GeV
- Scattering term
 - extended for nucleon induced reactions to 8 GeV
 - included s-wave absorption
 - pion induced reactions (up to 1.5 GeV)
- Fixes to several models and robustness tests

Hadronics: Improvements & fixes

- Element selection in creating final state
 - fix for materials with many elements
 - now choosing isotope before calling model
 - using A^{2/3} cross-section approximation
- QGSM: improved meson splitting
- Added ion reaction cross-section
 - parameterizations from Shiver, Kox and Shen.
- Improved registration
 - of cross-section registration and models

Hadronic Physics Lists

- The latest physics lists are now included
 - Ported from the latest version available for 5.2
 - Validation against use cases is underway
 - New version 'with guarantees'
 - In first quarter 2004
- Physics lists and builders can be used:
 - As is, compiled in a 'deployment' directory
 - Altered (or additional/customized version) by user/experiment, in own installation

Additional categories

- Visualization
 - Of ghost geometries for parameterization
 - New HepRep XML driver for HepRep 2
 - New visualization commands

- Improved handling of auto-refresh at end of event/run
- Removed obsolete OPACS driver.
- Biasing
 - First implementation of "weight-window" biasing technique
- Environments
 - MOMO Java tools are now included
 - GGE (Geometry editor), GPE (Physics editor)
- Examples
 - Reviewed and updated

28 January 2004

G.Cosmo - LCG Application Area meeting

Major items for users' code migration

- Forced usage of touchable-history to retrieve information for the geometry hierarchy
 - Removed pointer to mother PV in G4VPhysicalVolume
- New default values (more accurate) for propagation in field
- 'Non-magnetic' fields require now their chord-finder and equation of motion initialized directly
- New interface for registration of cross-sections in hadronics, now registered directly with the process (*)
- Exception handling enabled in hadronic physics (*)
- Mandatory kernel functionalities of the run-manager are now grouped in the new G4RunManagerKernel class (*)
- New data set for low-energy EM processes

(*) for advanced users

Established new releases & new features

- Established releases
 - End of June (minor release)
 - End of December (major release)
- Planning the new activities for 2004
 - taking into consideration requirements of all users including those from LHC experiments / LCG
 - Users' Technical Forum at CERN
 - February 5th, 15:00-17:30
 - Requirements collection and first-level prioritization

http://cern.ch/geant4

Summary

- Geant4 6.0 includes
 - New features in the geometry modeler
 - New implementation of EM standard processes 'model-based'
 - Improvements in hadronics models
 - Leading particle & cross section biasing
 - Source and configuration files for latest hadronic Physics Lists
 - See: <u>http://cern.ch/geant4/source/ReleaseNotes4.6.0.html</u>
- Geant4 is evolving
 - With the feedback from LHC experiments, BaBar and numerous other experiments and application domains.
 - Users' Technical Forum at CERN on February 5th for collecting new requirements !

Thanks to all Contributors & Users