Instrumentation of the very Forward Region of a Linear Collider Detector

Wolfgang Lohmann

DESY (Zeuthen)

Colorado, Cracow, DESY(Zeuthen), JINR Dubna, London (UC), Minsk (BSU), Prague, Protvino (IHEP), Tel Aviv

Collaboration

November 13 2003

ECFA Workshop

The TESLA Detector

Functions of the very Forward

Measurement of the Luminosity
(LAT)
Fast Beam Diagnostics
(LCAL)
Shielding of the inner

•Detection of Electrons and Photons at very low angle – extend hermiticity

Distance of Cals.:

Radial beam position:

< 60 µm

< 0.7

Measurement of the

Laser Áilgnment System

New collaborator: Jagiellonian Univ. Cracow Photonics Group

Work just started:

reconstruction of Ne-Ne laser spot on CCD camera

Some systematics in ⊖ Reconstruction

Resolution as function of the number of cylinders

Schematic

Heavy crystals

W-Diamond sandwich

Y Z X

• Fast Beam Diagnostics

(LCAL)

1st Results:Single Parameter Analysis

detector: realistic segmentation, ideal resolution single parameter analysis, bunch by bunch resoluti

	nominal	our precision	Beam Diag.
Bunch width x Ave.	553 nm	1.2 nm	~ 10 %
Diff.		2.8 nm	~ 10 %
Bunch width y Ave.	5.0 nm	0.1 nm	Shintake
Diff.		0.1 nm	Monitor
Bunch length z Ave.	300 µm	4.3 μm	~ 10 %
Diff.		2.6 μm	~ 10 %
Emittance in x Ave.	10.0 mm mrad	1.0 mm mrad	?
Diff.		0.4 mm mrad	?
Emittance in y Ave.	0.03 mm mrad	0.001 mm mrad	?
Diff.		0.001 mm mrad	?
Beam offset in x	0	7 nm	5 nm
Beam offset in y	0	0.2 nm	0.1 nm
Horizontal waist shift	0 μm	80 μm	None
Vertical waist shift	360 μm	20 μm	None

Photons

Realistic beam

Efficiency to identify energetic electrons and photons

√s = 500

Sensor prototyping, Diamonds

FAP4/FAP_4_3_Finel

Different surface treatments :

- #1 substrate side polished; 300 um
- #2 cut substrate; 200 um
- #3 growth side polished; 300 um
- #4 both sides polished; 300 um

Diamond; Size: 12x12 mm²

Metallisation: 10 nm Ti + 400nm Au

Current (I) dependence on the voltage Ohmic behavior for 'ramping up/down', hysteresis

Sensor prototyping, Crystals

Sensor prototyping, C₃F₈ Gas Ionisation

Pads for charge collectio n

Beam Test 26 GeV e⁻ beam, 10³s⁻¹

- The Instrumentation of the Very Forward Region of a LC is a challenging Topic
- MC Simulations to optimise the Design are progressing • Different Detector Technologies for LCAL are studied
- Tests with Sensor Prototypes have been started
- After about two years we will present a Design
- The goal is to start after with the construction and test of a prototype

Charge collection distance measurements

Q_{meas.} = Q_{created} x ccd / L

Charge collection distance measurements

The sensors are not irradiated

Upper curve is ramping up HV,

Lower ramping down.

Charge collection distance is saturated to 50 μm at ~300V

FAP32 Sr DownToPA

Sensor prototyping and lab tests

FAP4/FAP_4_3_Final

Current (I) dependence on the voltage (V)

Ohmic behavior for 'ramping up/down', hysteresis

Resistance in the order of 100 TOhm

Current decays with time After 24 h nearly 1/2

Detection of Electrons and Photons

- essential parameters:
 - Small Molière radius
 - **High granularity**
 - Longitudinal segmentation
- Two photon event rejection
- (Severe background for particle searches)
- Electromagnetic fakes

1% from physics 2% from fluctuations

