Summary and Plans: Electroweak and alternative Theories

G. Pásztor UC Riverside, KFKI RMKI Budapest

> WG conveners: A.Denner, T. Ohl, M.Spira K. Mönig, G. Pásztor

Montpellier, ECFA LC Study, Nov 13-16, 2004

New LC notes since 2003 summer

- X I. Marfin, V. Mossolov, T. Shishkina: Anomalous quartic boson couplings via $\gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow WWZ$ at the TESLA kinematics
- X K.Mönig, J.Sekaric: A Study of Charged Current Triple Gauge Couplings at eγ collider
- X O. Nachtmann, C. Schwanenberger: CP Violation in the 3 Jet and 4 Jet Decays of the Z-Boson at GigaZ
- X M. Czakon, J. Gluza, J. Hejczyk: Tree and one-loop level tests of the minimal LR-symmetric model
- X M. Diehl, O. Nachtmann, F. Nagel: Probing triple gauge couplings with transverse beam polarization in $e^+e^- \rightarrow W^+W^-$
- ✗ S. De Curtis: Electro-weak Fits at CLIC
- P. Osland, A.A. Pankov, N. Paver: Discriminating graviton exchange effects from other new physics scenarios in e⁺e⁻ collision

Presentations in Montpellier

- **×** Francois Richard: Benefits of an improved e⁻ polarization accuracy
- **X** Jadranka Sekaric: TGCs from $e\gamma \rightarrow Wv$
- **×** Felix Nagel: TGCs with transverse polarization
- X Alejandro Lorca: Complete O(α) massive corrections to Bhabha scattering; automatization with aITALC
- Christian Schwanenberger: CP violation in 3- and 4-jet decays of the Z boson at GigaZ

O(α) massive Bhabha scattering calculation with aITALC

- X aITALC: automatic tool to compute 2 → 2 processes, planned launch 2004 February (A. Lorca, T. Riemann)

ECFA LC Study, Montpellier, Nov 13-16, 2004

CP violation in $Z \rightarrow 3$, 4 jets

Search for CP-violating Zbbg and Zbbgg couplings using CP-odd vector and tensor observables constructed from the momentum vectors of the b and anti-b quarks

ECFA LC Study, Montpellier, Nov 13-16, 2004

CP violation in $Z \rightarrow 3$, 4 jets

- **X** GigaZ can increase sensitivity by a factor of 10 with respect to LEP
- X Choice of polarization effects sensitivity greatly for vector observable
- **X** Code for MC reweighting available for interested experimentalists

ECFA LC Study, Montpellier, Nov 13-16, 2004

e⁻ polarization systematics

- ★ Precision measurements limited by systematics on P(e⁻) using polarimeters dP~0.5% (SLC) → 0.25% → ?
- ★ De-polarization effects of 0.2% @ 500 GeV
 - X How well is it understood?
- ✗ If P(e⁺) also available, systematics on effective polarization is much reduced due to favorable error propagation
 - X Need to know correlated time variations from polarimeters
- X At GigaZ: Blondel scheme based on ee → ff with pure s-channel vector exchange
 - X De-polarization accounted for
 - X Automatically luminosity weighted
 - X Assumed: only sign flips, absolute value of P remains the same, polarimeters needed for relative measurements
 - X Need to know correlated time variations
 - X Luminosity needs to be spent on less interesting polarization combinations

ECFA LC Study, Montpellier, Nov 13-16, 2004

e⁻ polarization systematics

- **X** Blondel scheme can be used at high energy using ff with s=s' (5-2 pb at 350-500 GeV, $A_{LR}\sim0.5$) or radiative return ff γ (17-7 pb, $A_{LR}\sim0.2$, need to reject Zee background: ~10% efficiency)
- W couples to L-handed e⁻: WW, Wev natural tools to measure P large forward peak in WW dominated by t-channel v exchange: A_{LR} in this region not sensitive to anomalous couplings
- **X** Typically a factor 3-4 improvement w.r.t. polarimeter measurement
- K. Mönig, Snowmass 2001 proceedings (for 500 GeV errors a factor of $\sqrt{2}$ larger)

A ₁ , with s-channel										
vector exchange \	T 500 ft-1	value	ue Rel. error [99]							
	$L=500 \text{ Ib}^{-1}$		$L_{\pm\pm}/L = 0.5$		$L_{\pm\pm}/L = 0.1$			Polarimeter		
	$E_{cm}=350 \text{ GeV}$		HE	rr	WW	HE	rr	WW	= 0	= 0.5
o suppression /	P e ^a / P e ^a [96]	0.8	0.10	0.51	0.07	0.21	1.11	0.11	0.25	0.25
	Pe+/Pe+ [96]	0.6	0.12	0.53	0.11	0.15	1.13	0.21	0.25	0.25
vector exchange	corr		ā 0.49	ă 0.91	0	ā 0.56	ā 0.93	ā 0.52	0	0.50
	$(P_{e^{3}} + P_{e^{+}})/(1 + P_{e^{3}}P_{e^{+}})$	0.95	0.02	0.08	0.02	0.05	0.17	0.02	0.07	0.08
	P es P es	0.48	0.11	0.22	0.13	0.18	0.42	0.18	0.35	0.43
for t-channel	▶ P _{e³} + P _{e⁴} ä P _{e³} P _{e⁴}	0.92	0.03	0.12	0.03	0.06	0.25	0.03	0.09	0.11
WW production					_					_

ECFA LC Study, Montpellier, Nov 13-16, 2004

e⁻ polarization systematics

- × WW can also be used in the absence of $P(e^{+})$ to recover sensitivity for A_{LR}
- F. Richard 's quick estimate for 1 ab⁻¹ at 1 TeV: gain of 14 on dP → gain of 5 on A_{LR} accuracy (w.r.t. dP=0.5%) → discriminate between Z' models and measure Z' mass with <10% error up to 7 TeV (LHC: direct observation up to 5 TeV, identification up to 2 TeV)

Open questions:

- \times No study at all for Wev
- **X** F.R.'s estimate does not take into account any detector effect
- X K.M.'s WW study based on tree-level analytic calculation only
- **X** Radiative corrections?
- New physics (e.g. KK towers...) can contribute angular distribution can be used to estimate / handle this effect
 Common interest with machine experts!

TGCs from $ee \rightarrow WW$

- X New phenomenological study using semi-leptonic WW
- Most general Lorentz invariant parametrization: 28 real parameters 7-7 yWW, ZWW couplings (4 CP conserving, 3 CP violating) CPT[°] symmetry: real and imaginary parts
- **X** In SM $g_1^{\gamma} = g_1^{Z} = \kappa_{\gamma} = \kappa_{Z} = 1$, others=0
- X Only loose constraints from LEP
- **×** 6 experimental observables: W production and decay angles
- X Construct optimal observables to get highest statistical sensitivity
- A symmetry classes of couplings (CP, CPT) with no correlation between classes
- **×** Fit all 28 couplings simultaneously

TGCs from $ee \rightarrow WW$

Errors in units of 10⁻³

M. Diehl, O. Nachtmann, F. Nagel

CP conserving, real part	Δg_1^{γ}	Δg_1^Z	$\Delta \kappa_{\gamma}$	$\Delta \kappa_Z$	λ_{γ}	λ_Z	${oldsymbol{\mathcal{G}}}_5^\gamma$	g 5 ^Z
No polarization	6.5	5.2	1.3	1.4	2.3	1.8	4.4	3.3
(P ₁ ⁻ ,P ₁ ⁺)=(±80%,0)	3.2	2.6	0.61	0.58	1.1	0.86	2.2	1.7
(P ₁ ⁻ ,P ₁ ⁺)=(±80%, ±60%)	1.9	1.6	0.40	0.36	0.62	0.50	1.4	1.1
(P _t ⁻ ,P _t ⁺)=(80%,60%)	2.8	2.4	0.69	0.82	0.69	0.55	2.5	1.9

Similar sensitivity for all classes (e.g. 0.36-2.5 with e⁺,e⁻ polarization)

Large correlations \rightarrow use LR basis to reduce correlation

 $h_{+}=Im(g_{1}^{R}+\kappa_{R})/\sqrt{2}$ only measurable with transverse polarization!

- X No polarization: 27 couplings measurable
- e⁻ polarization: factor 2 improvement on sensitivity
- ★ e⁻, e⁺ polarization: factor 3-4 improvement
- **X** Transverse polarization: factor 2-4 improvement, access to $Im(g_1^R + \kappa_R)/\sqrt{2}$

TGCs from $e\gamma \rightarrow W\nu$

- \checkmark L-handed e, R-handed γ to suppress s-channel e exchange
- Pythia for event generation at 450 GeV
 SIMDET v3 for detector simulation
- X Hadronic W decays only
- **X** Real $e\gamma$ mode: main background $e\gamma \rightarrow eZ$, $(e)\gamma\gamma \rightarrow qq$ Parasitic $e\gamma$ mode at $\gamma\gamma$ collider: new backgrounds $\gamma\gamma \rightarrow WW$ (semi-leptonic), $\gamma\gamma \rightarrow qq$
- ✗ High ~90% efficiency with 82% / 73% purity
- X 3 kinematic variables: W polar angle, W decay polar & azimuthal angles
- **X** WHIZARD ME to reweight distributions for TGCs
- **X** Only K_{γ} and λ_{γ} considered in the fit

TGCs from $e\gamma \rightarrow W\nu$

Errors in units of 10⁻³

K.Mönig, J.Sekaric

Real / Parasitic		$\Delta\kappa_{\gamma}$		λ_γ					
dL	1%	0.1%	0%	1%	0.1%	0%			
Generator level	3.3/3.4	1.0/1.0	0.4/0.4	0.29/0.31	0.27/0.29	0.27/0.29			
Efficiency	3.4/3.5	1.0/1.0	0.5/0.5	0.33/0.34	0.30/0.32	0.30/0.32			
Variable E _{beam} , WHIZARD	3.6/3.7	1.0/1.0	0.5/0.5	0.44/0.45	0.40/0.41	0.39/0.40			
Background	3.6/3.7	1.0/1.0	0.5/0.5	0.44/0.45	0.40/0.41	0.39/0.40			

Systematics (for dL=0.1%)

- × 1% change in photon polarization at P=+90%: $\kappa_{y} \sim 5\sigma$, $\lambda_{y} \sim 1\sigma$ effect
- **×** 50 MeV error on W mass: κ_{γ} , $\lambda_{\gamma} \sim 1\sigma$ effect
- **X** Beam energy spectrum: no effect

Ongoing study of low energy $\gamma\gamma$ events (beam strahlung)

ECFA LC Study, Montpellier, Nov 13-16, 2004

Remarks on charged TGCs

- × $\gamma\gamma \rightarrow WW$ phenomenological study on its way but using a different effective Lagrangian, will be difficult to compare with ee results
- X Understand differences for non-polarized ee \rightarrow WW results between TDR spin-density matrix and new OO analyses ($\Delta \kappa_V$)
- Physics interpretation of measured anomalous couplings depends on process
 - \mathbf{X} ee \rightarrow WW sensitive to vector resonances
 - $x \gamma \gamma \rightarrow WW$ sensitive to scalar and tensor resonances
 - \varkappa $e_{\gamma} \rightarrow W_{V}$ no effect from close by resonances

need all information to understand the nature of new physics

Possible subjects for the group

Suggestions to initiate the discussion in Montpellier:

- X Definition of suitable pseudo-observables for W pair-production that allow to interpret published data within different models
 - **X** SUSY: WW production through chargino box... no TGC involved
 - **X** Expectation from loop corrections ~ $3 \cdot 10^{-3}$ but sensitivity to ~ 10^{-4} : able to test SM in the same way as $\sin^2 \theta_{eff}^I$ and m_W do now
- ★ A complete evaluation of Strong EWSB signals (ee \rightarrow WW, VVV, VVvv; $\gamma\gamma$ \rightarrow WW, WWZ; $e\gamma \rightarrow Wv$, WZv, ...). Which parameters can we extract with which accuracy?
 - × Interaction among gauge bosons given by gauge structure
 - X Longitudinal gauge bosons connected to the EWSB mechanism: their interactions can teach us about this mechanism if there is no elementary Higgs
 - In strongly interacting theory longitudinal gauge bosons expected to have similar interactions to pions in QCD: expect to see effects from the dynamics of the new theory

ECFA LC Study, Montpellier, Nov 13-16, 2004

Possible subjects for the group

- X Which signals can we expect from Little Higgs theories?
 - X Z', W' , vector-like fermion states, new scalars
 - X Direct detection is not very probable at LC look for indirect effects: contact interactions, TGCs
- X Are we able to observe and analyze the unexpected (BBSM ~ Beyond 'traditional' BSM)?
 - X Non-commutative QED? ...
- **X** ED theories
 - X KK excitations, stringy effects, ...
 - **X** Radions (studied in the Higgs group)
- X Tree vs. one-loop level
 - X Recent study on minimal LR symmetric model (M. Czakon, J. Gluza, J. Heyczyk) shows that corrections from SM particles have a different structure from their SM counterpart: in fits it is not sufficient to use only tree-level couplings modified by SM radiative corrections... where does this happen in other models?

ECFA LC Study, Montpellier, Nov 13-16, 2004

Possible subjects for the group

- Lack of realistic experimental studies... especially on fermion-pair production: studies by experimentalists so far ~ phenomenological studies including some experimental systematics
- X A lot to learn and give as input to the machine design Example: What precision do we really need on luminosity?
 - X If decision on crossing angle, we need new mask design which has an influence on luminosity measurement
 - X WW self-calibrating due to large forward peak but 2f sensitive... at what extent?
 - X Can we use large angle Bhabha scattering? Effect of new physics...