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Chapter 1

Introduction

1.1 General remarks about the structure of couplings (not
complete)

Only some keywords:

Which configurations are possible in principle?
s–channel:

e−

e+

J=1 ← only from RL,LR: SM (γ, Z)

J=0 ← only from LL,RR: NP!

⇒ In principle: P (e−) fixes also helicity of e+!

Which configurations are possible in the crossed channels?
t–channel:
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depends on P (e+)!

Idepends on P (e−)!

ie+

e−

a

c

b

i

⇒ helicity of e− not coupled
with helicity of e+!

Two examples:

a) Single W production

	
only influenced by P (e+)!

ie+

e−

ν̄

e−

W+

γ

b) Bhabha scattering
⇒ γ, Z exchange in s–channel: selects LR, RL
⇒ γ, Z exchange in t–channel: LL,RR possible

unpolarised 4.50 pb
Pe− = −80% 4.63 pb
Pe− = −80%, Pe+ = −60% 4.69 pb
Pe− = −80%, Pe+ = +60% 4.58 pb
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Table 1.1: Graphical representation of the various spin configurations in e+e− collisions.
The thick arrow represents the direction of motion of the particle and the double-arrow
its spin direction. The first column indicates the corresponding cross section, the third
column the fraction of this configuration and the last column the total spin assuming a
zero orbital angular momentum.

1.2 Longitudinally polarised Electrons (under work)

1.3 Improvement of effective Polarisation (not yet final)

In general the cross section of any process in an e+e− collider can be subdivided according
to the initial helicity states see 1.1:

σ = σRR + σLL + σRL + σLR. (1)

In the case of e+e− annihilation into a vector particle (in the SM this would be e+e− →
γ/Z0) only the two J=1 configurations σRL and σLR contribute and the cross section for
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Figure 1: Effective polarization as a function of the beam polarization.
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Figure 2: Left: Contribution of the uncertainty on beam polarization on the measurement
of the unpolarized cross section. Right: Same for the left-right asymmetry. Both plots are
normalized to the polarimeter resolution ∆P which is assumed to be identical for both
beams.

arbitrary beam polarizations is given by

σ =
1 + Pe−

2

1− Pe+

2
σRL +

1− Pe−

2

1 + Pe+

2
σLR

= (1− Pe−Pe+)
σRL + σLR

4

[

1 +
Pe+ − Pe−

1− Pe+Pe−

σLR − σRL

σLR + σRL

]

= (1− Pe+Pe−) σ0 [1 + Peff ALR] (2)

with the unpolarized cross section σ0 =
σRL + σLR

4
(3)

the left-right asymmetry ALR =
σLR − σRL

σLR + σRL

(4)

and the effective polarization Peff =
Pe+ − Pe−

1− Pe+Pe−
(5)

The values of the effective polarization can be read from fig. 1. Notice that the effective
polarization is closer to 100 % than any of the two beam polarizations. Furthere excellent
reference see also [14].

In the experiment one would like to extract the two quantities σ0 and ALR. This can be
done by running the experiment with two different polarizations. One would choose one
setup with the electron beam predominantly left-handed and the positron beam right-
handed and in the second setup one would reverse both spin directions. The cross sec-
tions measured with the two setups are denoted as σ−+ and σ+−. It is then

σ0 = (1 + |Pe+ ||Pe− |)
σ−+ + σ+−

2

ALR =
1

|Peff|
σ−+ − σ+−

σ−+ + σ+−

(6)
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Figure 3: Left: Limits on contact interactions from e+e− → bb without positron polariza-
tion (upper bars) and with 40 % polarization [15]. Right: Accuracy of the Z ′ couplings in
e+e− → bb without positron polarization (dashed line) and with 60 % polarization [16].

Both quantities depend on the beam polarizations. The contribution of the uncertainty of
the polarization measurement to the error is

∆σ0

σ0

=

√
2 ∆P

1 + |Pe+ ||Pe− |
√

|Pe+ |2 + |Pe− |2

∆ALR

ALR
= −∆Peff

|Peff|
(7)

with

∆Peff
|Peff|

=

√
2 ∆P

(|Pe+ |+ |Pe− |) (1 + |Pe+ ||Pe− |)

√

(1− |Pe− |2)2 + (1− |Pe+ |2)2 (8)

Equal precision ∆P for the measurement of the two beam polarizations is assumed.
The resulting uncertainties are shown in fig. 2. The error contribution from the po-

larimeter to the unpolarized cross section is rather small. For a polarimeter precision of
0.05%, it only becomes relevant for data samples with more than 4 · 106 signal events. For
an electron beam polarization of 80 % there is a small improvement in the extraction of
the unpolarized cross section due to positron beam polarization.

The error introduced in ALR by the polarization measurement is larger. Without positron
beam polarization one is limited by the polarimeter (0.05 % precision) for samples with
more than 106 events. The improvement due to positron beam polarization is substantial.
For a positron polarization of 60 % the error on ALR is reduced by a factor of 3.8.
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In fig. 3 we show an example of the improvements that can be achieved with positron
polarization. The left figure shows the achievable limits on contact interactions in e+e− →
bb from the measurements of the cross section, ALR, AFB, and Apol

FB at a center-of-mass en-
ergy of 800 GeV [15]. The different pairs of bars show contact interactions with differ-
ent helicity structures. For each pair the upper bar shows the achievable limits without
positron polarization and the lower with a positron polarization of 40 %.

Once new physics is detected positron polarization is even more important to under-
stand the nature of the new interaction. The right plot of fig. 3 shows the accuracy with
which the couplings of a new vector boson Z ′ could be measured in e+e− → bb (observ-
ables as above, center-of-mass energy 500 GeV). The dashed line indicates the achievable
precision without positron polarization for two different Z ′ masses while the solid lines
assume 60 % positron polarization.
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Chapter 2

Physics with Polarisation of e− and e+

beam

2.1 Determination of quantum numbers of new physics par-
ticles

We demonstrate the determination of quantum numbers at one example of physics be-
yond the SM: Supersymmetry is one of the most motivated possibilities for NP. However,
even its minimal version, the MSSM, leads to about 105 new free parameters. At the LC
one has to determine the Susy parameters as model independent as possible, as well as
to prove the underlying Susy assumptions, e.g. that the Susy particles have to carry the
same quantum numbers (with the exception of the spin) as their SM partners.

E.g. Susy transformations associate chiral (anti)fermions to scalars e−L,R ↔ ẽ−L,R but
e+

L,R ↔ ẽ+
R,L. In order to prove this association the use of both beam polarized is necessary

[2]. The process e+e− → ẽ+ẽ− occurs via γ and Z exchange in the s–channel and via
neutralino χ̃0

i exchange in the t–channel. The association can be directly tested only in the
t–channel and the use of polarized beams serves to separate this channel. We demonstrate
this by isolation of the pair ẽ+

Rẽ−L by the LL configuration of the initial beams in an example
where the selectron masses are close together, mẽL

= 200 GeV, mẽR
= 190 GeV, so that ẽL,

ẽR decay via the same decay channels, see Fig. 1a. The other Susy parameters are taken
from the reference scenario SPS1a [1]. With Pe− = −80%, Pe+ = 0% the pairs σ(ẽ+

Rẽ−L ) =
102 fb and σ(ẽ+

L ẽ−L ) = 108 fb are close together. This will nearly not be changed even if
Pe− = −100% were available, which would result in σ(ẽ+

Rẽ−L) = 113 fb and σ(ẽ+
L ẽ−L ) =

119 fb!
However, if we use polarized positrons a separation of the wanted pair ẽ+

Rẽ−L with the
test of the chiral quantum number might be possible: Pe− = −80%, Pe+ = −40% result
in σ(ẽ+

Rẽ−L ) = 143 fb and σ(ẽ+
L ẽ−L ) = 66 fb and with Pe− = −80%, Pe+ = −60% even

σ(ẽ+
Rẽ−L ) = 163 fb, σ(ẽ+

Rẽ−R) = 49 fb and σ(ẽ+
L ẽ−L ) = 44 fb are obtained, see Fig. 1.
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Figure 1: a) Separation of the selectron pair ẽ−L ẽ+
R in e+e− → ẽ+

L,Rẽ−L,R with longitudi-
nally polarized beams in order to test the association of chiral quantum numbers to scalar
fermions in Susy transformations;
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2.2 Suppression of Background Channels
3 examples (under work)

2.2.1 e+e− → W+W−

2.2.2 e+e− → ννγ: example ED, e+e− → γG

2.2.3 Susy example: Smuon production, Uriel

2.3 Model-independent contact-interaction analysis at LC:
role of electron and positron polarizations

Generally, contact interactions (CI) represent an effective expression of a non-standard
dynamics characterized by one (or more) new and very large mass scale exchanges, valid
in quark and lepton reactions at the “low” energies

√
s � Λ attainable by current and,

perhaps, future accelerators. In this case, the new interactions and dynamical mass scales
can manifest themselves only indirectly, through deviations of the measured cross sec-
tions from the Standard Model (SM) predictions that, being dimensionally suppressed by
some power of

√
s/Λ, are expected to be quite small. Consequently, high energy reactions

in high luminosity and high precision experiments represent a suitable tool to study such
signatures. If a deviation is experimentally measured, one can try to identify the effect
and the corresponding model. If, conversely, no deviation occurs within the experimen-
tal accuracy, one can assess the attainable bounds on the new coupling constants, that
are essentially free parameters, by comparing theoretical deviations with experimental
statistical and systematic accuracies.

Here, we refer to the fermion pair production process

e+ + e− → f + f̄ , (1)

with f 6= t, at an electron-positron Linear Collider (LC) with c.m. energy
√

s = 0.5 TeV
and polarized electron and positron beams, and to the general, SU(3)×SU(2)×U(1) sym-
metric eeff dimension D = 6 contact-interaction Lagrangian, with helicity-conserving
and flavor-diagonal fermion currents [54]:

LCI =
1

1 + δef

∑

i,j

g2
eff εij (ēiγµei)

(

f̄jγ
µfj

)

. (2)

In Eq. (2): i, j = L, R denote left- or right-handed helicities, generation and color indices
have been suppressed, and the CI coupling constants are parameterized in terms of cor-
responding mass scales as εij = ηij/Λ2

ij with ηij = ±1, 0 depending on the chiral structure
of the individual interactions. Also, conventionally g2

eff = 4π, as a reminder that, in the
case of compositeness, the new interaction would become strong at

√
s of the order of

Λij . Obviously, deviations from the SM and upper bounds or exclusion ranges for the CI
couplings can be equivalently expressed as lower bounds and exclusion ranges for the
corresponding mass scales Λij .

For a given final fermion flavor, apart from the ± signs, Eq. (2) envisages four indi-
vidual, and independent, CI couplings in the case f 6= e and three couplings in the elastic
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f = e case. Correspondingly, the most general (and model-independent) analysis of the
process (1) must account for the complicated situation where the full Eq. (2) is included in
the expression for the cross section, and all CI couplings can appear there simultaneously
as free, non-vanishing, parameters. Although by themselves the helicity amplitudes do
not interfere, the numerical constraints on CI couplings can be considerably weakened
due to potential cancellations of deviations of helicity amplitudes with opposite signs.

A simplifying procedure is to assume non-zero values for only one of the couplings (or
one specific combination of them) at a time with all others set to zero, which would avoid
problems associated with negative interference, and leads to tests of specific CI models
only.

On the other hand, it should be highly desirable to apply a more general kind of ex-
perimental data analysis that simultaneously includes all terms of Eq. (2) as independent
free parameters and, at the same time, allows the derivation of separate constraints (or ex-
clusion regions) on the individual coupling constants. A strong possibility in this regard
is offered by the availability of initial electron and positron longitudinal beam polariza-
tions, that enable to extract from the measured data the individual helicity cross sections
σij through the definition of particular, and optimal, polarized integrated cross sections
and, consequently, to disentangle the constraints on the corresponding CI coupling con-
stants εij [55–57]. Accordingly, a model-independent approach, in the sense stated above,
is obtained. Also, it is a well-known fact that, when both the electron and positron beams
are polarized, the total annihilation cross section into fermion-antifermion pairs will be
increased by a factor [58, 59] and, in principle, one could expect a corresponding increase
in sensitivity to the new parameters.

Polarized observables for contact interactions

The analysis of contact-interactions of Ref. [55], that we are briefly summarizing here,
is limited to the cases f 6= e, t where the SM is determined by only s-channel γ and
Z exchanges and external fermion masses are negligible, and uses as basic observables,
to be determined from angular integration of differential rates of events observed with
longitudinally polarized beams, the (unpolarized) total cross section σunpol and forward-
backward asymmetry AFB, the left-right asymmetry ALR and left-right forward-backward
asymmetry ALR,FB. These are defined, in the notation of Ref. [60], as:

σunpol =
1

4
[σLL + σLR + σRR + σRL] , (3)

AFB =
3

4

σLL − σLR + σRR − σRL

σLL + σLR + σRR + σRL

, (4)

ALR =
σLL + σLR − σRR − σRL

σLL + σLR + σRR + σRL
, (5)

and
ALR,FB =

3

4

σLL − σRR + σRL − σLR

σLL + σRR + σRL + σLR

. (6)

The deviations of these observables from the SM predictions are easily expressed in terms
of SM couplings and the CI ones, εij , of Eq. (2).

The reach at the LC on the CI couplings, and the corresponding constraints on their
allowed values in the case of no indirect effect observed, can be estimated by comparing
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the expression of the theoretical deviations determined by the εij with the foreseen ex-
perimental (statistical and systematic) uncertainties. The correlation among uncertainties
on the four basic observables can be taken into account via the method of the covariance
matrix [61, 62].

As numerical inputs, we assume as reference values the identification efficiencies [63]:
95%, 60% and 35% for the channels for l+l−, bb̄ and cc̄, respectively. To assess the relative
roles of statistical and systematic uncertainties, we vary the time-integrated luminosity
Lint from 50 to 500 fb−1 with uncertainty δLint/Lint = 0.5%, and a fiducial experimental
angular range | cos θ| ≤ 0.99. Regarding electron and positron degrees of polarization,
we consider the values: |Pe| = 0.8; |Pē| = 0.0, and 0.6, with the uncertainties δPe/Pe =
δPē/Pē = 0.5 %.

100 200 300 400 500
20

40

60

100 200 300 400 500
20

40

60

Figure 2: Contact-interaction scale Λ vs. integrated luminosity, Lint, for b and c quarks,
and for the four helicity combinations. Thin curves: Pe = 0.8, Pē = 0, heavy curves:
Pe = 0.8, Pē = 0.6.

100 200 300 400 500

30

40

50

Figure 3: Same as Fig. 2, for muons. (Note other scale.)

The model-independent bounds on the mass scales Λij at the 95% C.L. allowed by the
experimental uncertainties reported above are shown in Figs. 2 and 3 for the considered
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annihilation channels, respectively. In these figures, heavy curves correspond to |Pe| =
0.8, |Pē| = 0.6 while thin curves correspond to |Pe| = 0.8, |Pē| = 0.0.

As one can see from Eqs. (3) and (4), without simplifying assumptions in the unpolar-
ized case the CI couplings could not be individually constrained within finite ranges, but
only mutual correlations could be derived. With initial longitudinal beam polarization,
the two additional available physical observables (5) and (6) are essential to obtain finite,
model-independent, bounds. In principle, electron beam polarization would be sufficient
to achieve this result but, depending on the luminosity and the final f f̄ channel, a signif-
icant increase on the sensitivity to CI couplings can arise from the additional availability
of positron polarization.

CI analysis in Bhabha and Møller scattering

With δef = 1 the four-fermion contact interaction Lagrangian of Eq. (2) is relevant to the
Bhabha scattering process

e+ + e− → e+ + e−, (7)

as well as to Møller scattering:

e− + e− → e− + e−. (8)

The possibility of studying new physics in the process (8) at the LC by turning the positron
beam into an electron beam has been considered with interest and, therefore, it should be
useful to assess (and compare) the sensitivities of the two processes to the four-electron
CI constants of Eq. (2) by a model-independent analysis that simultaneously accounts for
all ε’s as free parameters.

Different from the annihilation processes considered in Sect. 2.3, in the case of pro-
cesses (7) and (8), apart from the ± signs, there are only three (not four) independent CI
couplings: εLL, εRR and εLR = εRL (same ε’s for the two processes). The other principal
difference, that complicates the procedure to disentangle the constraints on individual
couplings, is that Bhabha scattering is determined, in the SM, by γ and Z exchanges in
both the s- and t-channels, while Møller scattering is determined by γ and Z poles in both
the t- and u-channels.

Bhabha scattering

With both electron and positron beams longitudinally polarized, one can assume that the
polarization of each beam can be changed on a pulse by pulse basis, which would al-
low the separate measurements of the polarized differential cross sections dσ++, dσ+−

and dσ−+, corresponding to the configurations of beam polarizations (Pe, Pē) = (P1, P2),
(P1,−P2) and (−P1, P2), respectively, with P1,2 > 0 [64]. They are related to combinations
of helicity cross sections dσR, dσL and dσLR,t containing the CI couplings and therefore
representing the basic observables for the analysis, by a system of linear equations of the
form [64]:

dσR =
(1 + P2)

2

2P2(P1 + P2)
dσ+− +

(1− P1)
2

2P1(P1 + P2)
dσ−+ −

1− P1P2

2P1P2

dσ++,

dσL =
(1− P2)

2

2P2(P1 + P2)
dσ+− +

(1 + P1)
2

2P1(P1 + P2)
dσ−+ −

1− P1P2

2P1P2
dσ++,
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dσLR,t = − 1− P 2
2

2P2(P1 + P2)
dσ+− −

1− P 2
1

2P1(P1 + P2)
dσ−+ +

1 + P1P2

2P1P2
dσ++. (9)

It turns out that, while σLR,t (that is pure t-pole) depends on a single contact interaction
parameter (εLR), which therefore can be directly disentangled from the other couplings,
σR and σL simultaneously depend on pairs of parameters, (εRR,εLR) and (εRR,εLR), respec-
tively, and in this case (ellipsoidal) allowed areas in the relevant planes can be obtained.
This clearly shows that both electron and positron polarization are needed to perform a
model-independent analysis of CI couplings in Bhabha scattering. One can easily see
that, without polarization (P1 = P2 = 0), in the general case only correlations among
couplings can be derived and, in particular, the contribution of εLR is subject to partial
cancellations.
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Figure 4: Allowed areas at 95% C.L. in the planes (εLR, εRR) and (εLR, εLL) obtained from
σR and σL in e+e− → e+e− at

√
s = 0.5 TeV, Lint(e

+e−) = 50 fb−1, |Pe| = 0.8, |Pē| = 0.6.
Vertical dashed lines indicate the range allowed to εLR by σLR,t.

To assess the sensitivity of Bhabha scattering to the compositeness scale, in Fig. 4
we depict as an example the 95% C.L. contours around εLL = εRR = εLR in the two-
dimensional planes (εRR,εLR) and (εRR,εLR), derived from a χ2 analysis of differential cross
sections, assuming that no deviation from the SM within the experimental uncertainty
(statistical and systematic) is measured in dσL, dσR and dσLR,t (Lint(e

+e−) = 50 fb−1,
P1 = 0.8, P2 = 0.6, δLint/Lint = δP1/P1 = δP2/P2 = 0.5%). The crosses indicate the
constraints obtained by taking one non-zero parameter at a time instead of two simulta-
neously non-zero and independent.

In Fig. 5 we show the maximum reachable values (95% C.L.) on the mass scales Λ as
a funtion of the time-integrated luminosity at the LC. The dramatic sensitivity of process
(7) to ΛLR, that can be disentangled directly owing to polarization, is clearly shown by
this figure.
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Figure 5: Model-independent reach on Λ at 95% C.L. vs. Lint(e
+e−) from e+e− → e+e− at√

s = 0.5 TeV, |Pe| = 0.8, |Pē| = 0.6.

Møller scattering with polarized electrons

Similar to process (7), in this case the SM amplitudes have both t- and u-poles. However,
there is an outstanding difference: denoting by P

(1)
e and P

(2)
e the degree of initial electron

longitudinal polarization, and by dσ++, dσ−− and dσ+− the measurable polarized dif-
ferential cross sections corresponding to the three configurations (P

(1)
e , P

(2)
e ) = (P1, P2),

(−P1,−P2) and (P1,−P2), respectively, with P1,2 > 0, the analogue of the system of linear
equations (9) is [64]:

dσRR =
(1 + P2)

2

2P2(P1 + P2)
dσ++ +

(1− P1)
2

2P1(P1 + P2)
dσ−− −

1− P1P2

2P1P2

dσ+−,

dσLL =
(1− P2)

2

2P2(P1 + P2)
dσ++ +

(1 + P1)
2

2P1(P1 + P2)
dσ−− −

1− P1P2

2P1P2

dσ+−,

dσLR = − 1− P 2
2

2P2(P1 + P2)
dσ++ −

1− P 2
1

2P1(P1 + P2)
dσ−− +

1 + P1P2

2P1P2
dσ+−, (10)

and each of the cross sections σRR, σLL and σLR depend on an individual contact-interaction
parameter. Therefore, complete disentangling of the various CI couplings (hence the
derivation of model-independent constraints) is directly achieved in the Møller process
with both beams polarized.

In Fig. 6 we report the 95% C.L. model-independent reach on Λ’s vs. the integrated
luminosity, that can be attained from process (8) at the LC with

√
s = 0.5 TeV and both

initial electrons longitudinally polarized with P1 = P2 = 0.8 (systematic uncertainties are
assumed to be the same as in the previous case). As regards the range of values of the
luminosity, we have taken into account that Lint(e

−e−) at the linear collider is expected to
be somewhat reduced by anti-pinching compared to Lint(e

+e−), typically by a factor 1/7
to 1/3, which, of course, tends to depress the sensitivity to the new physics. One can see,
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Figure 6: Model-independent reach on Λ at 95% C.L. vs. Lint(e
−e−) from e−e− → e−e− at√

s = 0.5 TeV and |P (1)
e | = |P (2)

e | = 0.8.

compared to Fig. 5, the higher sensitivity of the polarized process (8) to ΛLL and ΛRR with
respect to ΛLR.

One can conclude, finally, as far as the sensitivity to individual couplings in a model-
independent data analysis is concerned that, if Lint(e

−e−) is not too low, the two processes
(7) and (8) are somehow complementary. Also, the advantage of having both initial beams
polarized, that allows the measurement of suitable polarized cross sections in order to
disentangle the different contact-interaction couplings, is clear.

Identification of graviton exchange effects

Process (1) at the LC has been considered with much interest as a tool to look for effects
related to large extra dimensions and low-scale gravity [65, 66], in particular the virtual
effects from KK graviton exchange. This effect can in the ADD scenario [65] be modeled,
in the framework of contact interactions, by the effective Lagrangian [67]

L = i
4λ

M4
H

TµνT
µν , (11)

where Tµν is the energy-momentum tensor, MH is the relevant graviton cut-off mass scale
and λ is a sign factor (λ = ±1). In principle, one could apply the same arguments as
outlined in the previous sections to derive the sensitivity to (11) and the corresponding
reach on MH by considering the deviations from the Standard Model predictions caused
by this kind of interaction and numerically comparing them to the foreseen experimental
uncertainties on the cross sections. Actually, since there is only one coupling, polariza-
tion would not be strictly required, and the only difference that remains would be that,
compared to the previous contact-interaction Lagrangian (2), being induced by a dimen-
sion D = 8 operator the KK graviton exchange is suppressed by the much higher power
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(
√

s/MH)4, so that a lower reach on MH can be expected in comparison to the constraints
obtainable, at the same c.m. energy, on the Λ’s.

On the other hand, due to its spin-2 character, the deviations produced by KK ex-
change in the helicity amplitudes of process (1) have a specific angular dependence,
whereas those from the interactions represented by (2), due to their vector current-current
form, have a different angular dependence. Accordingly, for final f f̄ channels with f 6= e
dominated in the SM by s-channel γ and Z exchanges, there is the possibility of uniquely
identifying in the data analysis the effects of graviton exchange from other new physics.

In this connection, a particularly suitable observable is represented by the generalized
centre-edge asymmetry among integrated differential distributions [68]:

ACE =
σCE

σ
, (12)

with

σCE =

[
∫ z∗

−z∗
−

(
∫ −z∗

−1

+

∫ 1

z∗

)]

dσ

dz
dz, σ =

∫ 1

−1

dσ

dz
dz (13)

and 0 < z∗ < 1 (here, z = cos θ with θ the angle between electron and outgoing fermion
in the c.m.).

A crucial feature of ACE is that it is identical to that of the SM even if contact-interaction-
like interactions are present:

ASM+CI
CE ≡ ASM+CI

CE =
1

2
z∗

(

z∗2 + 3
)

− 1, (14)

independent of final-state flavour, energy, and longitudinal beam polarization and there-
fore, for these interactions, there is no deviation. Conversely, ACE with graviton exchange
is different and does depend on final state flavor and initial beam polarization, and the
largest deviation ∆ACE from ASM

CE is produced by the interference of the SM with Eq. (11).
Therefore, the asymmetry (12) has the property of “filtering out” the “conventional” con-
tact interactions represented by the Lagrangian (2) from deviations from the SM, and con-
sequently of providing a clear signature for graviton exchange, particularly for choices of
z∗ around the value z∗

0 = 0.596 where the right-hand side of (14) vanishes and the effect
(hence, the sensitivity) is maximal.

In Fig. 7 we present, as an example, the 5σ identification reach on the mass scale MH ,
summing over the channels f = µ, τ, b, c, that can be obtained at the LC by a χ2 analysis
assuming that no deviation ∆ACE is seen within the experimental accuracy, with the same
assumptions on the integrated luminosity and the initial beam polarization (and the cor-
responding uncertainties) considered previously. Thin, medium and heavy curves refer,
respectively, to the cases (Pe = Pē = 0), (Pe = 0.8, Pē = 0) and (Pe = 0.8, Pē = 0.6).

Longitudinal beam polarization appears to increase the sensitivity to graviton ex-
change, although the impact on MH is less dramatic in this case due to the suppression
(
√

s/MH)4 of the graviton coupling. Instead, initial polarization can be seen to play a key
role in distinguishing graviton exchange from competing effects, such as those originat-
ing from scalar particle exchange in both s- and t-channels, that can be “filtered” out by
appropriate polarization asymmetries [68, 69].
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Figure 7: 5σ reach on the mass scale MH vs. integrated luminosity from the process
e+e− → ff̄ , with f summed over µ, τ, b, c, and for the energy 0.5 TeV. Thin: unpolar-
ized; medium: electrons polarized, Pe = 0.8; heavy: both beams polarized, Pe = 0.8,
Pē = −0.6.
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2.4 Determination of sfermion parameters

The search for supersymmetric (SUSY) particles will be one of the main goals of a future
e+e− linear collider with an energy range

√
s = 0.5 − 1 TeV [46]. Such an e+e− linear

collider will also be very well suited for the precision determination of the parameters of
the underlying SUSY model, in particular if polarized beams are available. The precise
determination will be necessary to determine the mechanisms of SUSY breaking and elec-
troweak symmetry breaking and eventually to reconstruct of the underlying high scale
theory [47].

In this contribution we summarize the results of our recent phenomenological studies
on the production of third generation sfermions in e+e− annihilation at

√
s = 500 GeV

[48]. We take into account the effects of both e− and e+ beam polarizations. The main
advantages of using polarized beams are: (i) larger cross sections can be obtained, (ii)
background reactions can be suppressed, (iii) measurements of appropriate observables
lead to additional information on the SUSY parameters. All calculations are performed
within the Minimal Supersymmetric Standard Model (MSSM) with real parameters.

Sfermion Production

In the third generation, Yukawa terms give rise to mixing between the ‘left’ and ‘right’
states f̃L and f̃R (f̃ = t̃, b̃, τ̃ ). Neglecting the mixing between generations this mixing
is described by a hermitian 2× 2 mass matrix which depends on the soft SUSY–breaking
mass parameters MQ̃, MŨ etc., and the trilinear scalar coupling parameters At, Ab, Aτ . The
mass eigenstates are f̃1 = f̃L cos θf̃ + f̃R sin θf̃ , and f̃2 = f̃R cos θf̃ − f̃L sin θf̃ , with θf̃ the
sfermion mixing angle. Information on the sfermion mixing angle can be obtained from
measuring production cross sections using different combinations of beam polarizations
as we discuss below taking the production of light stops as a particular example.

The reaction e+e− → f̃i
¯̃fj proceeds via γ and Z exchange in the s–channel. The f̃i

couplings depend on the sfermion mixing angle θf̃ . In Figs. 8 a, b we show contour lines of
the cross section σ(e+e− → t̃1

¯̃t1) as a function of the e− and e+ beam polarizations P− and
P+ at

√
s = 500 GeV for mt̃1 = 200 GeV and (a) cos θt̃ = 0.4 and (b) cos θt̃ = 0.66. We have

included initial–state radiation (ISR) and SUSY–QCD corrections (for details see [48, 49]).
The white windows show the range of polarizations |P−| < 0.9 and |P+| < 0.6. As can be
seen, one can significantly increase the cross section by using the highest possible e− and
e+ polarization available. Moreover, beam polarization strengthens the cos θt̃ dependence
and can thus be essential for determining the mixing angle. Corresponding cross sections
for the production of sbottoms, staus and τ–sneutrinos are presented in [48].

Parameter Determination

We estimate the precision one may obtain for the parameters of the t̃ sector from cross
section measurements using the parameter point mt̃1 = 200 GeV, cos θt̃ = −0.66 as an
illustrative example: For P− = −0.9 we find σL(t̃1

¯̃t1) = 44.88 fb and for P− = 0.9

σR(t̃1
¯̃t1) = 26.95 fb (with P+ = 0) including SUSY–QCD, Yukawa coupling, and ISR cor-

rections. According to the Monte Carlo study of [50] one can expect to measure the t̃1
¯̃t1

production cross sections with a statistical error of ∆σL/σL = 2.1 % and ∆σR/σR = 2.8 %
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Figure 8: Dependence of σ(e+e− → t̃1
¯̃t1) on degree of electron and positron polarization

at
√

s = 500 GeV, for mt̃1 = 200 GeV, cos θt̃ = 0.4 in (a) and cos θt̃ = 0.66 in (b).
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Figure 9: (a) Error bands and 68% CL error ellipse for determining mt̃1 and cos θt̃ from
cross section measurements; the dashed lines are for L = 100 fb−1 and the full lines for
L = 500 fb−1. (b) Error bands for the determination of cos θt̃ from ALR. In both plots
mt̃1 = 200 GeV, cos θt̃ = −0.66,

√
s = 500 GeV, P− = ±0.9, P+ = 0.

in case of an integrated luminosity ofL = 500 fb−1 (i.e.L = 250 fb−1 for each polarization).
Scaling these values to L = 100 fb−1 leads to ∆σL/σL = 4.7 % and ∆σR/σR = 6.3 %. Fig-
ure 9 a shows the corresponding error bands and error ellipses in the mt̃1– cos θt̃ plane. The
resulting errors on the stop mass and mixing angle are: ∆mt̃1 = 2.2 GeV, ∆ cos θt̃ = 0.02
(∆mt̃1 = 1.1 GeV, ∆ cos θt̃ = 0.01 ) for L = 100 fb−1 (L = 500 fb−1). If in addition the e+

beam is 60% polarized these values can be improved by ∼ 25%.
For the determination of the mixing angle, one can also make use of the left–right

asymmetry ALR ≡ [σ(−|P−|, |P+|)−σ(|P−|,−|P+|)]/[σ(−|P−|, |P+|) + σ(|P−|,−|P+|)]. We
get ALR(e+e− → t̃1

¯̃t1) = 0.2496 for mt̃1 = 200 GeV, cos θt̃ = −0.66,
√

s = 500 GeV,
P− = 0.9, and P+ = 0. Taking into account experimental errors as determined in [50],
a theoretical uncertainty of 1%, and ∆P/P = 10−2 we get ∆ALR = 2.92% (1.16%) for

24



L = 100 fb−1 (500 fb−1). This corresponds to ∆ cos θt̃ = 0.0031 (0.0012). This is most likely
the most precise method to determine the stop mixing angle. The corresponding error
bands are shown in Fig. 9 b.

Once produced, sfermions will decay into e.g., t̃1 → bχ̃+
1 , b̃1 → bχ̃0

1, τ̃1 → τχ̃0
1, etc.

Information on the polarization of the fermions in the final states can be used to further
improve the precision on the SUSY parameters [51,52]. The basic SUSY breaking parame-
ters of the sfermion mass matrix can be extracted if both masses and the mixing angle are
known. In particular, At is given by At = µ cotβ + (m2

t̃1
−m2

t̃2
) sin 2θt̃/(2mt), and likewise

for Ab and Aτ where cot β has to be replaced by tan β. The precise determination of these
parameters is in particular important for reconstruction of the high scale theory and for
the determination of the SUSY breaking mechanism [47]. Moreover, it allows for cross
checks with the determination of At from the Higgs sector [53].
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2.5 Sfermion Mass measurements in the continuum (will
be written by Uriel)

2.6 CP asymetries in Neutralino Production and 2-body de-
cay

In the neutralino sector of the Minimal Supersymmetric Standard Model (MSSM) [32], the
gaugino mass parameter M1, the higgsino mass parameter µ, and the trilinear coupling
parameter Aτ in the stau sector, can be complex. The physical phases ϕM1

, ϕµ and ϕAτ
of

these parameters can cause large CP-violating effects already at tree level.
In neutralino production

e− + e+ → χ̃0
i + χ̃0

j (15)

and the subsequent leptonic two-body decay of one of the neutralinos

χ̃0
i → ˜̀+ `1, (16)

and of the decay slepton

˜̀ → χ̃0
1 + `2; `1,2 = e, µ, τ, (17)

the neutralino spin correlations lead to several CP-odd asymmetries. With the triple prod-
uct T = (~pe− × ~p`2) · ~p`1 , we define the T-odd asymmetry of the cross section σ for the
processes (15)-(17):

AT =
σ(T > 0)− σ(T < 0)

σ(T > 0) + σ(T < 0)
. (18)

If absorbtive phases are neglected, AT is CP-odd due to CPT invariance. The dependence
of AT on ϕM1

and ϕµ was analyzed in [33–35].
In case the neutralino decays into a τ -lepton, χ̃0

i → τ̃±
k τ∓, k = 1, 2, the T-odd transverse

τ− and τ+ polarizations P2 and P̄2, respectively, give rise to the CP-odd observable

ACP =
1

2
(P2 − P̄2), (19)

which is also sensitive to ϕAτ
. For various MSSM scenarios, ACP was discussed in [36].

For measuring the asymmetries, it is crucial to have both large asymmetries and large
cross sections. In this note we study the impact of longitudinally polarized e+ and e−

beams of a future linear collider in the 500 GeV range on the asymmetries AT, ACP and
on the cross sections σ.

Numerical results

We present numerical results for e+e− → χ̃0
1χ̃

0
2 with the subsequent leptonic decay of χ̃0

2

for a linear collider with
√

s = 500 GeV. For AT, Eq. (18), we study the neutralino decay
into the right selectron and right smuon, χ̃0

2 → ˜̀
R`1, ` = e, µ and for ACP, Eq. (19), that
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Figure 10: Contour lines of AT and σ for ϕM1
= 0.2π, ϕµ = 0, |µ| = 240 GeV, M2 = 400

GeV, tan β = 10 and m0 = 100 GeV.

into the lightest scalar tau, χ̃0
2 → τ̃1τ . We study the dependence of the asymmetries and

the cross sections on the beam polarizations Pe− and Pe+ for fixed parameters µ = |µ| ei ϕµ ,
M1 = |M1| ei ϕM1 , Aτ = |Aτ | ei ϕAτ , M2 and tan β. We assume |M1| = 5/3M2 tan2 θW and
use the renormalization group equations [37] for the selectron and smuon masses, m2

˜̀
R

=

m2
0 + 0.23M 2

2 − m2
Z cos 2β sin2 θW with m0 = 100 GeV. The interaction Lagrangians and

details on stau mixing can be found in [35].
In Fig. 10a we show the dependence of AT on the beam polarization for ϕM1

= 0.2 π
and ϕAτ

= ϕµ = 0. A small value of ϕµ is suggested by constraints on electron and
neutron electric dipole moments (EDMs) [38] for a typical SUSY scale of the order of
a few 100 GeV (for a review see, e.g., [39]). It is remarkable that in our scenario the
asymmetry can be close to 10% even for the small value of ϕM1

= 0.2 π and for ϕµ = 0.
The cross section σ = σ(e+e− → χ̃0

1χ̃
0
2) × BR(χ̃0

2 → ˜̀
R`1) × BR(˜̀R → χ̃0

1`2) is shown in
Fig. 10b. For our scenario with |Aτ | = 250 GeV and ϕAτ

= 0, the neutralino branching
ratio is BR(χ̃0

2 → ˜̀
R`1) = 0.63 (summed over both signs of charge) and BR( ˜̀R → χ̃0

1`2) =
1. Note that the asymmetry AT and the cross section σ are both considerably enhanced
for negative positron and positive electron beam polarization. This choice of polarization
enhances the contributions of the right slepton exchange in the neutralino production,
Eq. (15), and reduces that of left slepton exchange [40, 41]. While the contributions of
right and left slepton exchange enter σ with the same sign, they enter AT with opposite
sign, which accounts for the sign change of AT.

In Fig. 11a we show the contour lines of the τ polarization asymmetryACP, Eq. (19), for
ϕAτ

= 0.5π and ϕM1
= ϕµ = 0 in the Pe−-Pe+ plane. We have chosen a large value of |Aτ | =

1500 GeV because ACP increases with increasing |Aτ | � |µ| tan β [36]. For unpolarized
beams the asymmetry is 1%. However, it reaches values of more than ±13% if the e+ and
e− beams are polarized with the opposite sign. If at least one of the beams is polarized
(e.g. Pe− = 0.8, Pe+ = 0.6), the asymmetries are somewhat smaller (∼ 10%). The reason for
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this dependence is again the enhancement of either the right or the left selectron exchange
contributions in the production process. The cross section σ = σ(e+e− → χ̃0

1χ̃
0
2)×BR(χ̃0

2 →
τ̃+
1 τ−) is shown in Fig. 11b with BR(χ̃0

2 → τ̃+
1 τ−) = 0.22. Also σ is very sensitive to

variations of the beam polarization and varies between 1 fb and 30 fb.
Since the asymmetry ACP is also very sensitive to the phases ϕM1

and ϕµ we show for
ϕM1

= 0.2π and ϕµ = ϕAτ
= 0, the dependence ofACP and σ = σ(e+e− → χ̃0

1χ̃
0
2)×BR(χ̃0

2 →
τ̃+
1 τ−) on the beam polarization in Figs. 12a, b, respectively. The neutralino branching

ratio is BR(χ̃0
2 → τ̃+

1 τ−) = 0.19 for our scenario. Despite the small phases, ACP reaches
values up to −12% for negative e− and positive e+ beam polarizations.

Summary and conclusion

Within the MSSM we have analyzed the dependence on the beam polarization of two
CP-odd asymmetries in e+e− → χ̃0

1χ̃
0
2 and the subsequent leptonic two-body decay of χ̃0

2.
For the decay process χ̃0

2 → ˜̀
R`1, ˜̀

R → χ̃0
1`2 with `1,2 = e, µ, we have found that the

asymmetry AT of the triple product (~pe− × ~p`2) · ~p`1 , which is sensitive to ϕM1
and ϕµ, can

be twice as large if polarized beams are used, with e.g. Pe− = 0.8 and Pe+ = −0.6. Also
for these polarizations the cross section can be enhanced up to a factor of 2. For the neu-
tralino decay, χ̃0

2 → τ̃∓
1 τ±, we have given numerical examples for the beam polarization

dependence of the CP-odd τ polarization asymmetry ACP, which is also sensitive to ϕAτ
.

For the scenarios considered, both ACP and the cross section depend sensitively on the
beam polarizations and can be enhanced by a factor between 2 and 3. The dependence
on the beam polarizations of the asymmetries AT, ACP and of the cross sections is due
to the contributions from right and left selectron exchange in the neutralino production
process. Generally, negative (positive) e− and positive (negative ) e+ beam polarization
enhances right (left) selectron exchange. Due to the fact that both asymmetries and cross
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Figure 12: Contour lines of ACP and σ for ϕM1
= 0.2π, ϕµ = 0, |µ| = 250 GeV, M2 = 200

GeV, ϕAτ
= 0, |Aτ | = 250 GeV, tan β = 5 and m0 = 100 GeV.

sections can be enhanced significantly, we conclude that the option of having both beams
polarized at an e+e−-collider is advantageous for the determination of the CP-odd asym-
metries.
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2.7 CP asymetries in Neutralino Production and 3-body De-
cay

Complex parameters in the Minimal Supersymmetric Standard Model (MSSM) introduce
new CP-violating effects [30]. CP-odd observables defined with the help of triple prod-
ucts of momenta of the involved particles offer a possibility to study these CP-violating
effects [42,43]. In this note we focus on the effects of a complex U(1) gaugino mass param-
eter M1 and higgsino mass parameter µ in neutralino production and decay. We analyse
the production process

e+ + e− −→ χ̃0
1 + χ̃0

2 (20)

and subsequent leptonic three-body decay

χ̃0
2 −→ χ̃0

1 + l− + l+, (21)

where l = e, µ. The amplitude squared of the combined processes of production and
decay can be written as

|T |2 = PD + Σa
P Σa

D, (22)

where P and D describe production and decay without spin correlation and Σa
P and

Σa
D (a = 1, 2, 3) are the terms with spin correlation [44]. In Σa

P and Σa
D products like

iεµνρσp
µ
i p

ν
j p

ρ
kp

σ
l appear. This leads to CP-violating effects already at tree level. We intro-

duce the triple product ~pl+(~pe− × ~pl−), where ~pe− , ~pl− and ~pl+ are the momenta of initial e−

beam and the two final leptons l− and l+, respectively. We define a CP asymmetry as

AT =

∫

sign{(~pl+(~pe− × ~pl−)}|T |2dlips
∫

|T |2dlips
, (23)

assuming that final state interactions and finite-widths effects can be neglected. AT is
proportional to the difference of the number of events with the final lepton l+ above and
below the plane spanned by ~pe− and ~pl− . The analogous asymmetry for neutralino two-
body decays has been studied in [45].

Numerical Results

We analyse the influence of longitudinal beam polarization on the CP asymmetry AT in
the scenarios defined in Tab.1. Scenario A is inspired by the SPS1a scenario [28], whereas
in scenario B the mixing between gaugino and higgsino components is larger. We fix the
center of mass energy

√
s = 500 GeV and take the phases of the complex parameters

M1 = |M1|eiφM1 and µ = |µ|eiφµ as φM1
= π

2
and φµ = 0. In Fig.1a and b we show the CP

asymmetry AT , eq.(4), as a function of the e− beam polarization Pe− for different e+ beam
polarizations Pe+ , in the ranges−0.9 ≤ Pe− ≤ +0.9 and−0.6 ≤ Pe+ ≤ +0.6, for the scenar-
ios A and B . In both scenarios the highest CP asymmetry is reached for Pe− = −0.9 and
Pe+ = +0.6. For these polarizations the ẽL contributions to the spin density matrix domi-
nate. With opposite signs of the beam polarizations the ẽR contributions are dominating.
For scenario A (Fig.1a) one gets a CP asymmetry of about 14%(−2%) for the polarizations
Pe− = −0.9(+0.9) and Pe+ = +0.6(−0.6). In scenario B (Fig.1b) the CP asymmetry is about
3% in the unpolarized case whereas it is 5%(−3%) with polarizations Pe− = −0.9(+0.9)
and Pe+ = +0.6(−0.6). Fig.1c and d show the corresponding production cross sections
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Figure 13: a,b CP asymmetry AT , eq.(4), for e+e− −→ χ̃0
1χ̃

0
2 with subsequent leptonic

three-body decay χ̃0
2 → χ̃0

1l
+l−, and c,d production cross section σ(e+e− −→ χ̃0

1χ̃
0
2), as

a function of the e− beam polarization Pe− for different e+ beam polarizations Pe+ , for√
s = 500 GeV, φM1

= π
2

and φµ = 0 for the scenarios A and B defined in Tab.1.

σ as a function of the beam polarizations for the same parameters as in Fig.1a and b. In
scenario A(B) the cross section and hence the expected rate necessary to measure AT is
enhanced by e− beam polarization Pe− = −0.9 by a factor 1.8(1.6) compared to the unpo-
larized case. In addition, a polarized e+ beam with Pe+ = +0.6 would further enhance
the cross section by a factor 1.5(1.6).

Summary and Conclusion

We have analysed the dependence on longitudinal beam polarizations of the CP asym-
metry AT , eq.(4), in neutralino production with subsequent leptonic three-body decay.
Our framework has been the MSSM with complex parameters M1 and µ. By changing
the beam polarizations it is possible to increase the ẽL or ẽR contributions. We obtain
the highest cross section and CP asymmetry with beam polarizations Pe− = −0.9 and
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Pe+ = +0.6. Then in scenario A(B) the CP asymmetry is enhanced by a factor 1.1(1.5) and
the cross section is enhanced by a factor 2.9(2.4) compared to the unpolarized case.
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|M1| M2 |µ| tan β mẽL
mẽR

mχ̃0
1

mχ̃0
2

A 99.1 192.7 352.4 10 267.6 224.4 97.4 176.3
B 100.1 210 250 5 277.4 227.7 96 166.7

Table 2.1: Parameters |M1|, M2, |µ|, tan β, mẽL
and mẽR

in the scenarios A and B and the
corresponding masses of mχ̃0

1,2
. All masses are given in [GeV].
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2.8 Production of Singlino-dominated Neutralinos with Po-
larized Beams

Nonminimal extensions of the Minimal Supersymmetric Standard Model (MSSM) are
characterized by an additional singlet superfield with vacuum expectation value x. The
singlino character of these singlino-dominated neutralinos crucially depend on the pa-
rameter x. In the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [18–21]
or an E6 inspired model with one extra neutral gauge boson Z ′ and one additional sin-
glet superfield [22] neutralinos with a dominant singlet higgsino (singlino) component
exist for large values x & 1 TeV. Since the singlino component does not couple to gauge
bosons, gauginos, (scalar) leptons and (scalar) quarks, cross sections for the production of
the exotic neutralinos are generally small [23–26]. However, they may be produced at a
high luminosity e+e− linear collider with cross sections sufficient for detection, which can
even be enhanced by the use of one or both beams polarized. We analyze the regions of x
where the associated production of the singlino-dominated neutralino yields detectable
cross sections for different beam polarisations in scenarios where the MSSM-like neutrali-
nos have similar masses and mixing character as in the ‘typical mSUGRA’ SPS 1a scenario
for the MSSM [27, 28].

Production of singlino-dominated neutralinos

In the NMSSM the parameters (for details see [18]) M1 = 99 GeV, M2 = 193 GeV, tan β =
10, the effective µ parameter µeff = λx = 352 GeV and the selectron masses mẽR

= 143 GeV
and mẽL

= 202 GeV are chosen according to the scenario SPS 1a. For large x � |M2| a
singlino-dominated neutralino χ̃0

S with mass≈ 2κx in zeroth approximation decouples in
the neutralino mixing matrix while the other four neutralinos χ̃0

1,...,4 have MSSM character
as in SPS 1a with masses 96 GeV, 177 GeV, 359 GeV and 378 GeV.
Further we consider an E6 inspired model with one extra neutral gauge boson Z ′ and
one additional singlet superfield which contains six neutralinos [22]. Again the MSSM
parameters and masses of the MSSM-like neutralinos are fixed according to the scenario
SPS 1a, while a nearly pure light singlino-like neutralino χ̃0

S with mass ≈ 0.18 x2/|M ′| in
zeroth approximation exists for very large values |M ′| � x [29]. The sign of M ′ is fixed
by requiring relative sign +1 between the mass eigenvalues of χ̃0

S and χ̃0
1 [23].

In Fig. 14 we show the associated production of the singlino-dominated χ̃0
S together

with the lightest MSSM-like neutralino χ̃0
1 for unpolarized beams and beam polarizations

P− = +0.8, P+ = 0 and P− = +0.8, P+ = −0.6 for two masses 70 and 120 GeV of χ̃0
S , where

the singlino-dominated neutralino is the LSP and NLSP, respectively. Electron beam po-
larisation P− = +0.8 enhances the cross section by a factor 1.5 to 1.8, while additional
positron beam polarisation P+ = −0.6 gives a further enhancement factor of about 1.6.
The cross sections are decreasing in good approximation as 1/x2 governed by the gaugino
content of χ̃0

S [23,24]. If we assume a cross section of 1 fb to be sufficient for discovery, the
singlino-dominated neutralino can be detected with unpolarized beams for x < 7.4 TeV
(9.7 TeV) in the NMSSM with mχ̃0

S
= 70 GeV (120 GeV) and for x < 8.5 TeV (6.4 TeV) in

the E6 model. For polarized electron beam the reach in x is enhanced to x < 10.0 TeV
(12.3 TeV) in the NMSSM and x < 11.4 TeV (7.9 TeV) in the E6 model, whereas for both
beams polarized to x < 12.6 TeV (15.5 TeV) in the NMSSM and x < 14.4 TeV (10.0 TeV)
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in the E6 model. Direct experimental evidence of a fifth neutralino would be an explicit
proof for an extended SUSY model and is also crucial to apply sum rules in order to test
the closure of the neutralino system [30].
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Figure 14: Cross sections for the production of a singlino-dominated neutralino χ̃0
S via

e+e− → χ̃0
Sχ̃0

1 for
√

s = 500 GeV in the SPS 1a inspired scenarios in the NMSSM and
E6 model with M1 = 99 GeV, M2 = 193 GeV, tan β = 10 and µeff = λx = 352 GeV
with unpolarized beams (solid) and beam polarizations P− = +0.8, P+ = 0 (dotted) and
P− = +0.8, P+ = −0.6 (dashed). The mass of χ̃0

S is fixed at 70 GeV and 120 GeV by the
parameters κ (NMSSM) and M ′ (E6 model).

Conclusion

We have studied the production of singlino-dominated neutralinos in the NMSSM and
an E6 inspired model at a linear collider with polarized beams. With both beams polar-
ized the cross sections are enhanced by a factor 2.4 – 2.9 in comparison to unpolarized
beams, depending on the scenario. This enhances the reach for the singlino-dominated
neutralinos to singlet vevs as large as 15 TeV.
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Figure 15: SUSY – Sneutrino production in R–parity violating model: Resonance pro-
duction of e+e− → ν̃ interfering with Bhabha scattering for different configurations of
beam polarization: unpolarized case (solid), Pe− = −80% and Pe+ = +60% (hatched),
Pe− = −80% and Pe+ = −60% (dotted) [31].

2.9 Polarization effects in R–parity violating SUSY

In R–parity violating SUSY, processes can occur which prefer the extraordinary (LL) or
(RR) polarization configurations. An interesting example is e+e− → ν̃ → e+e−. The main
background to this process is Bhabha scattering. Polarizing both electrons and positrons
can strongly enhance the signal. A study [31] was made for mν̃ = 650 GeV, Γν̃ = 1 GeV,
with an angle cut of 450 ≤ Θ ≤ 1350 and a lepton–number violating coupling λ131 = 0.05
in the R–parity violating Langrangian L 6R ∼

∑

i,j,k λijkLiLjEk. Here Li,j denotes the left–
handed lepton and squark superfield and Ek the corresponding right–handed field [31].
The resonance curve for the process, including the complete SM–background is given
in Figure 15. The event rates at the peak are given in Table 2.2. Electron polarization
with (−80, 0) enhances the signal only slightly by about 2%, whereas the simultaneous
polarization of both beams with (−80,−60) produces a further increase by about 20%.
The background changes only slightly due to the t–channel (LL) contributions from γ
and Z exchange.
This configuration of beam polarizations, which strongly suppresses pure SM processes,
allows one to perform fast diagnostics for this R–parity violating process. For example
the process e+e− → Z ′ could lead to a similar resonance peak, but with different polariza-
tion dependence. Here only the ‘normal’ configurations LR and RL play a role and this
process will be strongly suppressed by LL. Therefore such a resonance curve, Figure 15,
with different beam polarizations would uniquely identify an an R–parity violating SUSY
process.

36



Table 2.2: SUSY – Sneutrino production in R–parity violating SUSY:
Cross sections of e+e− → ν̃ → e+e− for unpolarized beams, Pe− =
−80% and unpolarized positrons and Pe− = −80%, Pe+ = −60%. The
study was made for mν̃ = 650 GeV, Γν̃ = 1 GeV, an angle cut of
450 ≤ θ ≤ 1350 and the R–parity violating coupling λ131 = 0.05 [31].

σ(e+e− → e+e−) with Bhabha–background
σ(e+e− → ν̃ → e+e−)

unpolarized 7.17 pb 4.50 pb
Pe− = −80% 7.32 pb 4.63 pb
Pe− = −80%, Pe+ = −60% 8.66 pb 4.69 pb
Pe− = −80%, Pe+ = +60% 5.97 pb 4.58 pb
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2.10 Production of heavy Higgs bosons in weak boson fu-
sion

The possibility to enhance cross sections by using beam polarization can be very impor-
tant for detecting processes with a very low rate. In Ref. [17] the production of the heavy
neutral CP-even Higgs boson H of the MSSM was studied. Since for large values of the
CP-odd Higgs boson mass MA the heavy Higgs bosons A and H are approximately mass
degenerate, MA ≈ MH , the pair production channel e+e− → HA is limited by kinematics
to the region MH <

√
s/2. The kinematic limit of the LC can in principle be extended by

single Higgs production in the process e+e− → νν̄H . However, due to the decoupling
properties of the heavy Higgs bosons for MA � MZ the V V H coupling (V = W±, Z) is
very small, so that the process e+e− → νν̄H has only a very low rate.
In Ref. [17] it was shown that higher-order contributions to this Higgs-boson produc-
tion process can remedy this situation, making the process potentially accessible at the
LC. This requires a high integrated luminosity and polarized beams. The cross section
becomes enhanced for left-handedly polarized electrons and right-handedly polarized
positrons. While an 80% polarization of the electron beam alone results in a cross section
that is enhanced by a factor 1.8, the polarization of both beams, i.e. 80% polarization for
electrons and 60% polarization for positrons, would yield roughly an enhancement by a
factor of 2.9. With an anticipated integrated luminosity of the LC running at its highest
energy of O(2ab−1) the enhancement in the cross section due to the beam polarization
can extend the kinematic reach of the LC by roughly 100 GeV compared to the case of
unpolarized beams.
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Table 2.3: 1σ statistical errors in units of 10−3 on the real parts of CP conserving TGCs in
the presence of all anomalous couplings at

√
s = 500 GeV, with unpolarised beams and

with different beam polarisations.

Re ∆g
γ
1 Re ∆gZ

1 Re ∆κγ Re ∆κZ Re λγ Re λZ Re g
γ
5 Re gZ

5

no polarisation 6.5 5.2 1.3 1.4 2.3 1.8 4.4 3.3
(P−

l , P+

l ) = (∓80%, 0) 3.2 2.6 0.61 0.58 1.1 0.86 2.2 1.7
(P−

l , P+

l ) = (∓80%,±60%) 1.9 1.6 0.40 0.36 0.62 0.50 1.4 1.1
(P−

t , P+
t ) = (80%, 60%) 2.8 2.4 0.69 0.82 0.69 0.55 2.5 1.9

2.11 Triple gauge boson couplings

An important feature of the electroweak Standard Model (SM) is the non-Abelian nature
of its gauge group, which gives rise to gauge boson self-interactions, in particular to the
triple gauge couplings (TGCs) γWW and ZWW . The most general vertices contain alto-
gether 14 complex parameters [71], six of them CP violating. The SM predicts only four
CP conserving real couplings to be non-zero at tree level. A precision measurement of
the TGCs at high energies will be a crucial test of the validity of the SM, given that a va-
riety of new physics effects can manifest itself by deviations from the SM predictions (for
references see e.g. [72]). Though no deviation from the SM has been found for the TGCs
from LEP data [73], the bounds obtained are comparatively weak. The tightest bounds
on the anomalous couplings, i.e. on the differences between a coupling and its SM value,
are of order 0.05 for ∆gZ

1 and λγ , of order 0.1 for ∆κγ and of order 0.1 to 0.6 for the real
and imaginary parts of C and/or P violating couplings. These numbers correspond to
fits where all anomalous couplings except one are set to zero. Moreover, many couplings,
e.g. the imaginary parts of C and P conserving couplings, have been excluded from the
analyses so far.
At a future linear e+e− collider one will be able to study these couplings with unprece-
dented accuracy. A process particularly suitable for this is W pair production where both
the γWW and the ZWW couplings can be measured at the scale given by the c.m. en-
ergy

√
s. In two recent papers the prospects to measure the full set of 28 (real) TGCs in

this reaction is systematically investigated for unpolarised beams as well as for longitudi-
nal [72] and transverse [74] beam polarisation. In these two studies optimal observables
are used, which are constructed to give the smallest possible statistical errors for a given
event distribution [75]. In addition, they take advantage of the discrete symmetries of
the differential cross section. In W pair production the covariance matrix of these observ-
ables consists of four blocks that correspond to CP even or CP odd TGCs and to their
real or imaginary parts. Within each block all correlations between couplings are taken
into account.
Table 2.3 shows the errors on the real parts of CP conserving TGCs at

√
s = 500 GeV with

unpolarised beams and with different beam polarisations, assuming an integrated lumi-
nosity of 500 fb−1. Here, only those events are considered where one W boson decays into
a quark-antiquark pair and the other one into eν and µν. It is further assumed that the two
jets of the hadronic W decay cannot be identified as originating from the up- and down-
type (anti)quark. In the case of longitudinal polarisation the luminosity is distributed
equally on both directions of the polarisation vectors and the results are then combined.
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Table 2.4: Same as Table 2.3, but for the imaginary parts and with the L-R-
parameterisation.

Im gL
1 Im κL Im λL Im gL

5 h̃− h̃+ Im λR Im gR
5

no polarisation 2.7 1.7 0.48 2.5 11 — 3.1 17
(P−

l , P+

l ) = (∓80%, 0) 2.6 1.2 0.45 2.0 4.5 — 1.4 4.3
(P−

l , P+

l ) = (∓80%,±60%) 2.1 0.95 0.37 1.6 2.5 — 0.75 2.3
(P−

t , P+
t ) = (80%, 60%) 2.6 1.2 0.46 2.0 3.7 3.2 0.98 4.4

The errors with unpolarised beams are between 10−3 and 10−2 in the parameterisation
using photon and Z couplings. At 800 GeV all errors (with or without polarisation) are
smaller, notably for Re ∆κγ . For both c.m. energies the errors on the couplings in the γ-
Z-parameterisation decrease by about a factor 2 when going from unpolarised beams to
longitudinal e− polarisation and an unpolarised e+ beam. Going from unpolarised beams
to polarised e− and e+ this factor is between 3 and 4 for all couplings, except for Re ∆κZ

at 800 GeV where it is 4.7. If both beams have transverse polarisation, the errors on most
couplings are approximately of the same size as in the situation where only the e− beam
has longitudinal polarisation. Only for Reλγ , ReλZ , Re λ̃γ and Re λ̃Z are they smaller, viz.
they are of the same size as with both beams longitudinally polarised. This is true for
both energies. If electron as well as positron polarisation is available we thus conclude
that, regarding the 1σ-standard deviations on the TGCs (without assuming any coupling
to be zero) longitudinal polarisation is the preferable choice, apart from one exception (see
below). Note that we are better with longitudinal polarisation also for all CP violating
couplings.
It has been emphasized [75] that the following linear combinations [71] can be measured
with much smaller correlations than the γ-Z couplings:

gL
1 = 4 sin2 θW gγ

1 + (2− 4 sin2θW ) ξ gZ
1 ,

gR
1 = 4 sin2 θW gγ

1 − 4 sin2θW ξ gZ
1 , (24)

where ξ = s/(s − m2
Z), and similarly for the other couplings. The L- and R-couplings

respectively appear in the amplitudes for left- and right-handed initial e−. Therefore this
parameterisation seems to be more “natural” in the presence of beam polarisation than
the conventional one. For detailed plots showing the sensitivity to the TGCs as a function
of the degree of longitudinal polarisation we refer to [72]. There an extended optimal-
observable method [76] has been used where correlations between TGCs are eliminated
through appropriate energy- and polarisation-dependent reparameterisations.
For the imaginary parts of the CP conserving couplings, see Table 2.4, we further use the
linear combinations h̃± = Im(gR

1 ± κR)/
√

2 instead of Im gR
1 and Im κR. It has been shown

in [72] that h̃+ is not measurable from the normalised event distribution, neither with un-
polarised beams nor with longitudinal polarisation. One can however measure this cou-
pling with transverse beam polarisation with good sensitivity. In the γ-Z-parameterisation
this means that the four couplings Im gγ

1 , Im gZ
1 , Im κγ and Im κZ are not simultaneously

measurable without transverse polarisation.
Although for most couplings longitudinal polarisation of both beams is the advantageous
choice, measurement of the full parameter space requires to spend part of the total lumi-
nosity of the collider on the transverse polarisation mode.
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For comparison with a simulation of determining the charged current triple gauge cou-
plings via a fit see also [77].
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2.12 Probing New Physics with Transverse Polarization via
CP violation (plots+some more text are coming)

This is a précis of a recent preprint [70]. Transverse polarization (TP) enables novel CP
violation search in the inclusive process e+e− → A + X . When the spin of A is unob-
served and me is neglected, only (pseudo-)scalar or tensor currents associated with a
new-physics scale Λ can lead to CP-odd observables at leading order in the couplings
from interference with γ and Z in the presence of TP. In order to test CP violation, one
needs more than the momenta of particles to be measured in e+e− → ff̄ . The presence
of TP provides such a vector, without observing final state polarization. This leads to
gain in statistics. CP violation due to beyond the standard model interactions may be
parametrized in terms of contact interactions in a model independent manner. When me

is neglected, with only TP interactions that transform as V and A cannot interfere at lead-
ing order in the new interactions with the standard model interactions to yield CP odd
correlations, which can be inferred from general results of Dass and Ross. We have eval-
uate the contributions to the differential cross-section due to (pseudo)-scalar and tensor
contact interactions at leading order in the interaction strengths for the process e+e− → tt̄.
This is used to construct an effective up-down asymmetry and a polar angle integrated
version of the same. By assuming that the coefficients of the effective interaction that is
suppressed by the second power of the new-physics scale Λ, to be of order unity, we show
that at

√
s = 500 GeV and with an integrated luminosity

∫

dtL = 500 fb−1, we find that at
the 90% confidence level, the scale Λ can be bounded at about 10 TeV, with perfect TP.
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2.13 Transverse Polarization and Extra Dimensions at Lin-
ear Colliders

New Physics beyond the Standard Model (SM) is expected to lie at or near the TeV scale.
Once this scale is probed by future colliders, such at the LHC and the Linear Collider
(LC), this new physics should begin to show itself. What is uncertain is the form this
manifestation will take. The most straightforward scenario would be the production of
new particles such as SUSY or Kaluza-Klein resonances. A second possibility is that new
processes which are not allowed within the SM framework will begin to be observed.
Lastly, one can imagine that the data begins show small deviations from the SM pre-
dictions for various observables, e.g., cross sections and asymmetries, which grow with
increasing energy. This last possibility signals the existence of new physics beyond the
kinematic reach of the collider which is manifesting itself in the form of higher dimen-
sional operators, i.e., contact interactions. These operators can arise from the exchanges
of new particles, with different spins and in various channels depending upon the partic-
ular model. From the literature it is easy to construct a rather long list of potential new
physics scenarios of this type: a Z ′ from an extended gauge model [78,79], scalar or vector
leptoquarks [78, 80], R-parity violating sneutrino(ν̃) exchange [81], scalar or vector bilep-
tons [82], graviton Kaluza-Klein(KK) towers [83, 84] in extra dimensional models [85, 86],
gauge boson KK towers [84, 87], and even string excitations [88].
If such deviations are observed it will be necessary to have techniques available to dif-
ferentiate the multiple possibilities experimentally and point us in the direction of the
correct scenario. One possible path to take is to compare the observed shifts with the pre-
dictions of all of the currently available models [89]. An alternative to this approach is to
develop specific tools to rapidly identify certain classes of models which lead to uniquely
distinct signatures. In this paper we examine one such tool which becomes available at
the LC provided both the e− and e+ beams are initially longitudinally polarized and spin
rotators are used to convert these to transversely polarized beams. As we will see below,
transverse polarization (TP) [90] allows for new asymmetries to be constructed which
are associated with the azimuthal angle formed by the directions of the e± polarization
and the plane of the momenta of the outgoing fermions in the e+e− → ff̄ process. His-
torically, the possible use of TP as a tool for new physics searches and analyses has not
gotten the attention it deserves in the literature [90]. Here we are interested in using the
associated TP asymmetries to uniquely probe for the s-channel exchange of spin-2 fields
in e+e− collisions which we normally associate with the Kaluza-Klein graviton towers
of the Arkani-Hamed, Dimopoulos and Dvali(ADD) [85] or Randall-Sundrum(RS) [86]
scenarios.

Transverse Polarization Asymmetries

For our analysis we will follow a slightly modified version of the notations and conven-
tions employed by Hikasa [90]. Consider the process e+e− → ff̄ with the both electron
and positron beams polarized. We will denote the linear and transverse components of
the e−(e+) polarizations by PL,T (P ′

L,T ) and for simplicity assume that the two transverse
polarization vectors are parallel up to a sign. In this case, the spin-averaged matrix ele-
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ment for this process can be written as

|M̄|2 =
1

4
(1− PLP ′

L)(|T+|2 + |T−|2) + (PL − P ′
L)(|T+|2 − |T−|2)

+ (2PTP ′
T )[cos 2φ Re(T+T ∗

−)− sin 2φ Im(T+T ∗
−)] , (25)

where φ is the azimuthal angle defined on an event-by-event basis described above. It is
interesting to note that the φ−dependent pieces of |M̄|2 are particularly sensitive to the
relative phases between the two sets of amplitudes. We also observe from this expression
the important fact that the φ-dependent pieces are only accessible if both beams are simul-
taneously transversely polarized. Thus to have azimuthal asymmetries at a LC we must
begin with both beams longitudinally polarized and employ spin rotators.
Let us first consider the simple case with massless fermions; we define the quantities

fLL = QeQf + gZ(ve − ae)(vf − af )P

fRR = QeQf + gZ(ve + ae)(vf + af )P

fLR = QeQf + gZ(ve − ae)(vf + af )P

fRL = QeQf + gZ(ve + ae)(vf − af )P , (26)

where ve, ae(vf , af ) are the vector and axial vector couplings of the initial electron(final
fermion) to the Z and Qe,f are their corresponding electric charges, with

gZ =
GF M2

Z

2
√

2πα
, (27)

and
P =

s

s−M 2
Z + iMZΓZ

. (28)

Without scalar exchange but allowing for the possibility of spin-2 the relevant helicity
amplitudes for this process are given by

T+−
+− = fLL(1 + z)− fg(z + 2z2 − 1)

T−+
+− = fLR(1− z)− fg(z − 2z2 + 1)

T+−
−+ = fRL(1− z)− fg(z − 2z2 + 1)

T−+
−+ = fRR(1 + z)− fg(z + 2z2 − 1) . (29)

where z = cos θ. Note that the spin-2 exchange merely augments the amplitudes which
are already present in the SM(though with different cos θ dependencies), i.e., no new he-
licity amplitudes are generated by spin-2. In contrast to this, scalar exchange would yield
additional amplitudes of the form T ++

++ etc. not present in the SM and would thus be
easily isolated using the more conventional asymmetries associated with two beam lon-
gitudinal polarization [81]. fg is a model-dependent quantity; in the usual ADD model,
employing the convention of Hewett [83], one finds

fg =
λs2

4παM 4
H

. (30)

where MH represents the cutoff scale in the KK graviton tower sum and λ = ±1. In the
RS model the corresponding expression can be obtained through the replacement

λ

M4
H

→ −1

8Λ2
π

∑

n

1

s−m2
n + imnΓn

. (31)
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where Λπ is of order a few TeV and mn(Γn) are the masses(widths) of the TeV scale gravi-
ton KK excitations. In what follows we will always assume that we are below the thresh-
old for the production of these resonances otherwise the spin-2 nature of the new ex-
change would be easily identified through an examination of the resonances themselves.
We will also assume that their widths can be neglected in cross section calculations.
In the case of massive final state fermions, such as tops, the helicity amplitudes given
above are slightly altered and new amplitudes T±±

+− and T±±
−+ are also present. They will

be included in the analysis in the case of top quark pair production.
What is the form or the angular distribution, dσ/dzdφ, in the SM? In particular, we are
interested in the z-dependence of the terms associated with cos 2φ and sin 2φ in the ex-
pression above when no new physics is present. We note that the a small ‘imaginary’
term will be present even in the SM due to the finite width of Z. For

√
s ≥ 500 GeV

this term can be safely neglected for most of our analyses. As shown in, e.g., the work of
Hikasa, both of these φ-dependent terms are always proportional to 1− z2 in the SM and
will remain so even if new gauge boson exchanges are present. However, due to the more
complex z-dependence of the spin-2 contributions to the helicity amplitudes we expect
significant modifications of the SM result when gravitons are exchanged. In fact, interfer-
ence between SM and spin-2 exchange amplitudes are found to produce both even and
odd−z terms with the latter proportional to ∼ z(1− z2) whereas the smaller pure gravity
terms are instead found to be even in z and proportional to z2−(2z2−1)2. The general dif-
ference in the z-dependence of the of the φ sensitive terms and, in particular, the existence
of the odd-z contributions is clearly a signal for spin-2 exchange.
Let us assume, as mentioned above, that we are in an energy regime where the effects of
the finite width of the Z can be neglected. For the moment, this would seem to imply that
the term proportional to sin 2φ can be neglected in the case of KK graviton exchange. Let
us proceed making this assumption but remembering to return to this important point
below. We will later see that the terms that we now neglecting will have no influence on
this part of our analysis. In order to attempt to isolate the spin-2 exchange contributions
we first can form a differential azimuthal asymmetry distribution which we define by

1

N

dA

dz
=

[
∫

+
dσ

dzdφ
−

∫

−
dσ

dzdφ
∫

dσ

]

, (32)

where
∫

±
are integrations over regions where cos 2φ takes on ± values; integration over

the full ranges of z and φ occurs in the denominator. It is important to note that we expect
this differential asymmetry to take on rather small numerical values since it is normalized
to the total cross section and not to the differential cross section at the same value of z as
is usually done. As we will see below, this particular normalization is most useful in
isolating the most important aspects of TP physics. To get a feeling for this asymmetry,
we show its behaviour for both the SM and in the ADD scenario in Fig.1 at a 500 GeV
LC for the final states f = µ or τ, c and b. Note that from here on we will combine
results for the f = µ and τ final states to get added statistics. In this figure we have for
concreteness assumed that the spin rotators are nearly 100% efficient [91] so that PT = 0.8
and P ′

T = 0.6. Note that the spin-2 effects are large and in particular the fact that the
azimuthal asymmetry distribution is no longer symmetric under z → −z as we might
expect from the discussion above.
There are two ways to naively access the odd-z terms. First, one can take the differen-
tial azimuthal asymmetry defined above, separately integrate it over positive and nega-
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Figure 16: Differential azimuthal asymmetry distribution for e+e− → ff̄ at a 500 GeV
LC assuming a luminosity of 500 fb−1. The histograms are the SM predictions while the
data points assume the ADD model with MH = 1.5 TeV. In the top panel f = µ and τ
are combined, while in the middle(lower) panel, f = c(b). PT = 0.8 and P ′

T = 0.6 are
assumed.
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tive values of z, then take the difference, i.e., form a forward-backward asymmetry using
N−1dA/dz:

AFB =
1

N

[

∫

z≥0

dz
dA

dz
−

∫

z≤0

dz
dA

dz

]

. (33)

It is important to be reminded that in the SM and in any new physics scenario with s-
channel Z ′ exchanges one has AFB = 0. This is also true in the usual four-fermion contact
interaction scenario [93] which involves only vector and axial-vector couplings. Due to
the nature of spin-0 exchange it is clear that AFB would remain zero in this case as well.
A second possibility is to take odd moments of the asymmetry with respect to, e.g., the
Legendre polynomials Pn(z) [92]:

< Pn >=
1

N

[

∫

dz Pn(z)
dA

dz

]

. (34)

Note that only < P1,3 > will be non-zero in this case since no factors of z5 appear in
the cross section. As in the case of AFB , these moments are zero in both the SM and Z ′

models. In the case of graviton exchange, not only are the moments < P1,3 > non-zero,
they are also not independent of each other. A short analysis finds that in the case of
spin-2 exchange the ratio of moments is fixed: < P3 > / < P1 >= −3/7, uniquely. It
is thus rather obvious that the existence of odd-z terms is a signal for graviton, or more
generally, spin-2 exchange.

Analysis

It is clear that non-zero values of either AFB or < P1,3 > provide a clean signature for
spin-2 exchange in the e+e− → ff̄ process. Their appearance at the level of 5σ can thus be
claimed as, not just a discovery of new physics, but spin-2 exchange in particular. To be
specific in what follows let us concentrate on the ADD model; (almost) all limits obtained
there can be immediately translated to the case of the RS scenario. From Fig.1 it is appar-
ent that modest values of MH cause quite sizeable distortions in the N−1dA/dz distribu-
tion. However, as we will see this sensitivity is somewhat diluted if we are only asking
whether or not, e.g. AFB is non-zero. After all the asymmetry distribution may be quite
different than what the SM predicts in both magnitude and shape and yet AFB will remain
zero. Such a possibility will occur in the case of , e.g., spin-0 exchange. To determine the
5σ identification reach we will assume that the individual polarizations are known rather
well, δP/P = 0.003, that the efficiencies of identifying the final state fermions is rather
high: 100% for f = µ, τ , 60% for f = c, t, and 80% for f = b with no associated system-
atic uncertainties and include the effects of initial state radiation. The 5σ identification
reaches, making these assumptions, are shown in Figs. 2 and 3 for different values of

√
s

as functions of the integrated luminosity. In obtaining these results we have combined all
of the various final states above into a single fit. In all cases a small angle cut of 100 mrad
around the beam pipe has been employed.
From these two figures some immediate conclusions can be drawn. First, it is clear that
the identification reach obtained from AFB is somewhat superior to that obtained from
the measurements of < P1,3 >. Secondly, it is clear that the identification reach in either
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Figure 17: 5σ identification reach in MH using AFB as a function of the integrated lumi-
nosity from the process e+e− → ff̄ , with f summed over µ, τ, b, c and t. Here PT = 0.8
and P ′

T = 0.6 are assumed. From bottom to top the curves are for
√

s = 0.5, 0.8, 1, 1.2 and
1.5 TeV, respectively.

case alone, MH ∼ (3.5 − 4)
√

s, is not as good as what can be obtained employing longi-
tudinal polarization [92]. In order to obtain better reaches we must try something more
aggressive.

Figure 18: Same as the previous figure but now using the moments < P1,3 >.

We noted above that in the SM, in all Z ′ models and in the case of conventional four-
fermion contact interactions the azimuthal asymmetry always takes the form N−1dA/dz ∼
(1−z2). Clearly these specific forms of new physics will only modify the normalization of
the azimuthal asymmetry distribution since its shape is left unaltered. We can thus ask up
to what value of the cutoff scale, MH , can we differentiate the effects of gravity–a change
in the shape of these distributions–from a simple overall change in the normalization of
distributions for the various final states. This allows us to set a limit on the value of MH

below which graviton exchange can be distinguished from Z ′ exchange or four-fermion
contact interactions. To do this we fix MH and try to fit the N−1dA/dz distributions for
µ, τ , c and b final states assuming a SM shape but allowing the normalization to float in-
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dependently for each final state. If the CL of the fit is very poor we raise MH until we
achieve a CL equivalent to 5σ, i.e., 5.7 × 10−5. For luminosities above 100 − 200 fb−1 the
errors are completely dominated by systematics and we find the results shown in Table
1. (Changing the luminosities in our range of interest 1

2
− 2 fb−1 has little quantitative

effect and only modifies the second decimal place in these results.) Here we see that for
MH ≤ (10 − 11)

√
s the effects of spin-2 graviton exchange can be distinguished from a

Z ′ or any form of the four-fermion contact interactions. This identification reach is nu-
merically similar to the 95% CL discovery reach for graviton exchange obtained using only
singly longitudinally polarized beams [92,94,95] for the same process. It is important that
a more detailed study of this type be performed using a realistic detector simulation since
the likely size of the true systematic errors will be somewhat larger than those assumed
in this analysis. However, the reach here is so large it is clear that this is an avenue worth
pursuing.

ECM (GeV) Reach (TeV)
500 5.4
800 8.8

1000 11.1
1200 13.3
1500 16.7

Table 2.5: Identification reach for MH in the ADD model assuming the distribution
N−1dA/dz ∼ 1−z2 and varying the individual normalizations for the final states f = µ, τ ,
f = b and f = c for LC of different center of mass energies.

Given these results we can go a step further. If graviton and Z ′ exchanges can be dis-
tinguished up to MH ≤ (10 − 11)

√
s using TP, what is the corresponding 95% CL search

reach for graviton exchange obtainable with TP? For this type of analysis we assume that
the N−1dA/dz distributions for each final state fermion are given by their SM values and
ask at what value of MH the corresponding ones with graviton exchange become indis-
tinguishable from these. Again we find that above very modest integrated luminosities
the errors are completely dominated by systematics; we thus expect our results to again
be on the high side of what would be obtained in a more detailed detector study. These
results are shown in Table 2 where we see that the values are in the range MH ≥ 20

√
s.

These are such enormous numbers that even a degradation by 30−40% would lead to the
highest search reaches for KK graviton exchange found so far [95].

ECM (GeV) Reach (TeV)
500 10.2
800 17.0

1000 21.5
1200 26.0
1500 32.7

Table 2.6: 95% CL search reach for MH as described in the text.

49



Given the great sensitivity of transverse polarization to KK graviton/spin-2 exchange it
would be natural to ask if TP can be used to distinguish the ADD from the RS model
scenarios below KK production threshold. At first, there would seem to be no difference
between the predictions of these two models for the situation under discussion. In the RS
model, if we are away from the Z and graviton KK poles the imaginary part of amplitude
which enters the term proportional to sin 2φ becomes vanishingly small. However, as
was recently pointed out by Datta, Gabrielli and Mele [96], the exchange of an essentially
continuous spectrum of ADD gravitons leads to a finite, cutoff-independent imaginary
part of the amplitude. This forgotten piece grows very rapidly with increasing

√
s and

depends quite sensitively upon the number of extra dimensions. Since this term is finite
it directly probes the effective fundamental Planck scale of the extra-dimensional theory.
Using the notation employed above one now finds that fg has an grown imaginary part:

fg =
λs2

4παM 4
H

[

1− i
πM4

H(
√

s)δ−2Sδ−1

16M δ+2
D

]

, (35)

where δ is the number of extra dimensions, MD is the δ dimensional fundamental scale
and Sδ−1 is the area of the δ sphere. We again note that the magnitude of this new imag-
inary part, unlike the real part as parameterized in the Hewett scheme, depends quite
strongly on the number of extra dimensions.

Figure 19: The N−1dAi/dz distributions at a 500 GeV collider assuming MH = MD = 1.5
TeV and δ = 3 with an integrated luminosity of 500 fb−1. The plotted points from top to
bottom in the center of the plot correspond to f = b, µ plus τ and c, respectively.

To proceed [97] we can form a new asymmetry in analogy to the above:

1

N

dAi

dz
=

[
∫

+
dσ

dzdφ
−

∫

−
dσ

dzdφ
∫

dσ

]

, (36)

where now the
∫

±
are integrations over regions where sin 2φ takes on ± values and we

integrate over all z and φ in the denominator as before. We note that when we perform the
integrations in this manner all terms proportional to cos 2φ are found to cancel implying
that there is no cross contamination from this other asymmetry source. (This also implies
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that all of our analyses above will go through even if a term proportional to sin 2φ is
present.) Of course this new distribution is identically zero in both the SM as well as
the RS model away from the Z and RS KK graviton poles. Thus, observing any non-zero
value for this quantity is a signal for the ADD model. This is particularly true after the
spin-2 nature of the exchange has already been established. Fig 4 shows how these new
asymmetry distributions may appear at a 500 GeV LC assuming as before that PT = 0.8
and P ′

T = 0.6 and taking δ = 3 for purposes of demonstration. For simplicity we have
assumed MH = MD in this figure and will continue to do so in our discussion below;
we expect these two mass scales to be reasonably comparable, though if for some reason
MH << MD this would lead to a serious modification in the sensitivity to this observable.

Figure 20: 5σ reach for the discovery of a nonzero value of the azimuthal asymmetry
N−1dAi/dz distribution as a function of the integrated luminosity at a LC for δ = 3. From
bottom to top the curves are for

√
s = 0.5, 0.8, 1, 1.2 and 1.5 TeV, respectively. MH = MD

is assumed throughout as is PT = 0.8 and P ′
T = 0.6.

Assuming a value of δ we can ask up to what value of MH = MD we can determine that
the N−1dAi/dz distribution is non-zero at the 5σ level. Based on the expression above we
expect that this reach will be reasonably sensitive to the value of δ; this is indeed what we
find from Fig. 5 which show the resulting reaches at the 5σ level for the range δ = 3 which
is∼ (2.5−3)

√
s. Although this number is not large in comparison to those we’ve obtained

in the other analyses above they provide the first indication that these two scenarios can
be distinguished at a collider via indirect measurements.

Other Processes

Can useful limits be obtained from other processes? Figs. 6 and 7 show the effect of
graviton exchange on the azimuthal asymmetry for the processes e+e− → W+W−, γγ
and ZZ, respectively. In the W +W− case, the asymmetry is not symmetric in z in the
SM so we can’t use our shape fitting trick here as we did for fermions. Changes in the
asymmetry shape in this case can come from all kinds of new physics and not just gravity.
However, we find that the new physics reach from this process is MH ∼ 6 − 7

√
s. Note

that for the other two processes new spin-1 exchanges are not possible so deviations must
arise from higher dimensional operators. The search reaches in these cases is found to be
in the MH ∼ 5− 6

√
s range.
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Figure 21: Transverse polarization asymmetry in e+e− → W+W− at a 500 GeV LC with a
luminosity of 0.5 ab−1. The SM is the histogram while the data is for MH = 2 TeV.

Figure 22: Same as the previous figure but now for e+e− → γγ(ZZ) in the top(bottom)
panel.
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Summary and Conclusion

Historically, transverse polarization has not received much attention in the literature as a
probe for new physics signatures. However, in searching for and identifying new physics
at colliders one must make use of as many tools as possible.
In this paper we have examined the possible uses of transverse polarization in searching
for, discovering and identifying spin-2 graviton exchange signatures in models with extra
dimensions. The results of our analysis are as follows: (i) We have found that the inter-
ference of SM and spin-2 graviton KK exchanges leads to contributions to the azimuthal
asymmetry distributions which are odd in cos θ, a rather unique signature. The appear-
ance of such odd terms does not happen in the case of other new physics such as a Z ′,
contact interactions, gauge boson KK excitations or the exchange of new scalars. (ii) Us-
ing two different sets of observables that probe the integrated contributions of these odd
terms, we showed that it possible to differentiate KK graviton/spin-2 exchanges from all
other new physics contributions to contact interactions at the 5σ level up to ADD cutoff
scales of MH ∼ (3.5 − 4)

√
s. (iii) Fitting to the shape of the full differential distribu-

tion itself was shown to provide much more discriminating power; we found that the 5σ
identification reach was substantially increased to MH = (10− 11)

√
s, about a factor two

improvement over what we obtained in our earlier analysis in the case of longitudinal
polarization. This result is, however, quite sensitive to our assumptions about the sizes
of various systematic errors. (iv) Using this same type of analysis we obtained a 95% CL
search reach for new physics in excess of mH = 20

√
s; this is again about a factor of two

improvement over other analyses. As in the previous analysis, this result is also quite
sensitive to the assumed values of the systematic errors. Clearly, more detailed stud-
ies are required to verify these results. (v) In the case of the ADD model, an additional
imaginary piece of the amplitude is present in comparison to the RS model below KK
production threshold. We showed that this leads to a new asymmetry, produced through
transverse polarization, which allows RS and ADD model separation at 5σ up to masses
MH = (2.5− 3)

√
s.

It is clear from our analysis that transverse polarization can be a very powerful tool in
identifying new physics, particularly in the case of extra dimensions. Further detailed
study of the effects examined here may prove extremely useful for future linear collider
experiments.
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2.14 Separation of light flavors with transverse polarisa-
tion

When both the electron and the positron beams are transversely polarized, a separation
in space of quarks of different flavours f (u-type vs. d-type) is possible [98]. This effect
comes about since the annihilation cross section has an azimuthal dependence (w.r.t. the
beam polarization) which is flavour dependent.
Ignoring here the forward-backward asymmetry (since we shall integrate over a forward-
backward symmetric interval in cos θ), the electroweak annihilation cross section takes the
form

d2σf

d cos θ dφ
=

3

4

α2

s

[

h
(1)
f (s)(1 + cos2 θ) + h

(3)
f (s)P⊥

+ P⊥
− sin2 θ cos(2φ− φ+ − φ−)

]

, (37)

with θ and φ polar and azimuthal angles of the quark momentum. The energy- and
flavour-dependent functions h

(1)
f (s) and h

(3)
f (s) are given by

h
(1)
f (s) = Q2

f − 2Qf v vfReχ(s) + (v2 + a2)(v2
f + a2

f )|χ(s)|2,
h

(3)
f (s) = Q2

f − 2Qf v vfReχ(s) + (v2 − a2)(v2
f + a2

f )|χ(s)|2, (38)

with
χ(s) =

1

4 sin2 2θW

s

s−M 2
Z + iMZΓZ

, (39)

and MZ and ΓZ the mass and width of the Z. Furthermore, Qf is the quark charge, and
the electroweak coupling constants are normalized as

e− : v = −1 + 4 sin2 2θW, a = 1,

u : vu = 1− 8
3
sin2 2θW, au = 1, Qu = 2

3

d : vd = −1 + 4
3
sin2 2θW, ad = −1, Qd = −1

3
. (40)

The effect of flavour separation is thus related to the fact that the ratio h
(3)
f (s)/h

(1)
f (s) de-

pends on the flavour f . The effect is maximum for polar angle θ = π/2. If one integrates
over some range in polar angle, centered around θ = π/2, one finds

dσf (θ0, φ)

dφ
=

∫ cos θ0

− cos θ0

d2σf

d cos θ dφ
d cos θ

=
3α2

2s
cos θ0(1 + 1

3
cos2 θ0)

[

h
(1)
f (s) + h

(3)
f (s)ξ cos(2φ− φ+ − φ−)

]

, (41)

with

ξ = P⊥
+ P⊥

−

1− 1
3
cos2 θ0

1 + 1
3
cos2 θ0

. (42)

Flavour separation is then achieved in the sense that the ratio

Ru/d(φ) =
dσu(θ0, φ)

dσd(θ0, φ)
=

h
(1)
u (s) + h

(3)
u (s)ξ cos(2φ− φ+ − φ−)

h
(1)
d (s) + h

(3)
d (s)ξ cos(2φ− φ+ − φ−)

(43)

becomes φ-dependent. This ratio is shown in Fig. 23, for cos θ0 = 0.5 (integrated over
π/3 ≤ θ ≤ 2π/3) and for degrees of transverse polarization 1.0 and 0.8. Mass effects tend
to make the distribution more isotropic, and thus reduce the degree of separation [98].
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Figure 23: Flavour separation at
√

s = 0.5 TeV: u/d vs azimuthal angle, for the range
π/3 ≤ θ ≤ 2π/3, and for transverse degrees of polarization 1 and 0.80, as indicated.
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2.15 Polarisation Measurement: GigaZ – Precision tests of
the electroweak theory

2.15.1 Introduction

The option GigaZ refers to running the LC at the Z resonance with to about 109 Z events
and makes possible the most sensitive test of the SM ever made.
In the SM the left–right asymmetry ALR depends only on the effective leptonic weak
mixing angle:

ALR =
2(1− 4 sin2 Θl

eff)

1 + (1− 4 sin2 Θl
eff )

2
. (44)

The statistical power of the data sample can be fully exploited only when δ(ALR(pol)) <
δ(ALR(stat)). For 108− 109 Z’s this occurs when δ(Peff ) < 0.1%. In this limit δ(sin2 θeff ) ∼
10−5, which is an order–of–magnitude smaller than the present value of this error. Thus
it will be crucial to minimize the error in the determination of the polarization. Although
the improvements in Compton polarimetry achieving a precision < 0.1% may be difficult.
The desired precision should, nevertheless, be attainable with the Blondel Scheme, where
it is not necessary to know the beam polarization with such extreme accuracy, since ALR

can be directly expressed via cross sections for producing Z’s with longitudinally polar-
ized beams:

σ = σunpol[1− Pe−Pe+ + ALR(Pe+ − Pe−)], (45)

ALR =

√

(σRR + σRL − σLR − σLL)(−σRR + σRL − σLR + σLL)

(σRR + σRL + σLR + σLL)(−σRR + σRL + σLR − σLL)
. (46)

In this formula the absolute polarisation values of the left- and the right-handed states
are assumed to be the same. Corrections have to be determined experimentally by means
of polarimetry techniques; however, only relative measurements are needed, so that the
absolute calibration of the polarimeter cancels [3].
As can be seen from (46) the Blondel scheme also requires some luminosity for the less
favoured combinations (LL, RR). However only about 10% of running time will be needed
for these combinations to reach the desired accuracy for these high precision measure-
ments. Fig. 24 shows the statistical error on ALR as a function of the positron polarisation
for Pe− = 80%. Already with 20% positron polarisation the goal of δ sin2 θeff ∼ 10−5 can
be reached. The comparison of different beam polarisation configurations and the gain
for the ALR Measurements see also [4].
As an example of the potential of the GigaZ sin2θeff measurement Fig. 25 compares the
present experimental accuracy on sin2θeff and MW from LEP/SLD/Tevatron and the
prospective accuracy from the LHC and from a LC without GigaZ option with the pre-
dictions of the SM and the MSSM. With GigaZ a very sensitive test of the theory will be
possible.
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Figure 24: Test of Electroweak Theory: The statistical error on the left–right asymmetry
ALR of e+e− → Z → `¯̀at GigaZ as a function of the positron polarization P (e+) for fixed
electron polarization Pe− = ±80% [3].
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Figure 25: Test of Electroweak Theory: A high-precision measurement at GigaZ of the
left–right asymmetry ALR and consequently of sin2 Θl

eff allows to test the electroweak
theory at an unprecedented level. The allowed parameter space of the SM and the MSSM
in the sin2 Θl

eff–MW plane is shown together with the experimental accuracy reachable
at GigaZ. For comparison, the present experimental accuracy (LEP/SLD/Tevatron) and
the prospective accuracy at the LHC and a LC without GigaZ option (LHC/LC) are also
shown [5, 6].
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2.15.2 Higgsmass versus electroweak mixing angle

The precise measurement of the effective leptonic weak mixing angle at the Z-boson res-
onance, sin2 θeff , at GigaZ will allow a very sensitive test of the electroweak theory [6].
With both beams polarized, i.e. 80% polarization for electrons and 60% polarization for
positrons, an accuracy of ∆ sin2 θeff = ±1.3 × 10−5 can be achieved [7]. If only electron
polarization were available, this would result in an accuracy of only about ∆ sin2 θeff =
±9.5× 10−5 [8].
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Figure 26: The predictions for sin2 θeff in the SM and the MSSM as a function of Mh,
which corresponds to the Higgs-boson mass in the SM and the mass of the lightest CP-
even Higgs boson in the MSSM. The exclusion bound on the SM Higgs mass of Mh >
114.4 GeV [9] is indicated in the plot. The SM prediction is given for mt = 175± 0.1 GeV,
while in the MSSM the SUSY parameters have been scanned. The theory predictions are
compared with the experimental accuracies obtainable at GigaZ with an 80% polarized
electron beam only and with the case of simultaneous polarization of both beams.

The impact of the more precise measurement for testing the electroweak theory is indi-
cated in Fig. 26, where the experimental accuracy (using the current experimental central
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value of sin2 θeff [10]) is compared with the predictions in the SM and the MSSM. The the-
oretical predictions are shown as a function of Mh, which corresponds to the Higgs-boson
mass in the SM and the mass of the lightest CP-even Higgs boson in the MSSM. In the
region where both models overlap, Mh <∼ 135 GeV [11], the SM prediction corresponds to
the MSSM result in the limit where all SUSY partners are heavy. The area corresponding
to the MSSM prediction was obtained by varying all relevant SUSY parameters inde-
pendently, taking into account the constraints from the direct search for SUSY particles
and the LEP Higgs search. The MSSM predictions are based on the results described in
Ref. [12], and the Higgs mass predictions have been obtained with FeynHiggs2.0 [13].
Within the SM, the precision in sin2 θeff achievable with both beams polarized constrains
the Higgs-boson mass to an interval of few GeV (neglecting the uncertainties from un-
known higher-order corrections), while the precision corresponding to electron polar-
ization leaves an uncertainty of about ±25 GeV in Mh. Within the MSSM the parameter
space in the Mh–sin2 θeff plane is reduced by about a factor 7 with the sin2 θeff measurement
based on simultaneous polarization of both beams as compared to the case with electron
polarization only. This puts sensitive constraints on the possible values of the underlying
SUSY parameters. Combined with direct information on the SUSY spectrum the precise
measurement of sin2 θeff will allow a very stringent consistency test of the MSSM.
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2.16 Summary of the Physics Cases

We agreed in the POWER meeting that we should provide a table (like table 1 in GMP,
Steiner, hep-ph/0106155) summarising (also quantitatively) the effects of having P (e+) in
addition to P (e−).
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Chapter 3

Implementation of Spin Effects in Monte
Carlo Generators

The use of numerical programs based on Monte Carlo (MC) techniques has become essen-
tial in performing any detailed experimental analysis in collider physics. In this section
we will briefly recall the key features of these programs and discuss the inclusion of beam
polarization effects. We will limit ourselves to the so-called event generators. These pro-
grams must be interfaced to both detector simulations and beam energy spectra to give a
complete picture of the actual physics process.
In general the MC event generation process can be split into a number of phases.

• The hard process where the particles in the hard collision and their momenta are
generated, usually according to the leading-order scattering matrix element (ME).

• The parton-shower (PS) phase where the coloured particles in the event are per-
turbatively evolved from the hard scale of the collision to the infrared cut-off. The
emission of electromagnetic radiation from charged particles can be handled in a
similar way.

• Those particles which decay before hadronization, e.g. the top quark, are decayed
usually according to a calculated branching ratio with a ME to give the momenta
of the decay products. Any coloured particles produced in these decays are then
evolved by the PS algorithm.

• A hadronization phase in which the partons left after the perturbative evolution are
formed into the observed hadrons.

Most MC event generators fall into one of two classes: general-purpose (or multi-purpose)
event generators which aim to perform the full simulation of the event starting with the
initial-state collider beams, proceeding through the hard scattering process and finishing
with the final-state hadrons; the second class of programs (hereafter, parton-level event
generators) typically performs the hard scattering part of the simulation only, perhaps
including decays, and relies on one of the general-purpose generators for the rest of the
simulation.
During the LEP-era the experiments relied on the general-purpose event generators for
the description of hadronic final states together with more accurate parton-level programs
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interfaced to the former ones for specific processes, e.g. two- and four-fermion produc-
tion. At a future linear collider (LC), as one wishes to study final states with higher
multiplicities, for example six or even eight particles, this mixed approach will become
more important as these final states cannot be described by the general-purpose event
generators.

3.1 General-purpose Event Generators

Historically the main general-purpose event generators have been HERWIG [99], ISAJET [100]
and PYTHIA [101]. While the general philosophy of these programs is similar, they use
different phenomenological models and approximations. In general, at least for e+e−

collisions, the range of hard scattering processes implemented is very similar. All these
generators have a wide range of Standard Model (SM) processes available, reactions pre-
dicted by the Minimal Supersymmetric Standard Model (MSSM) as well as various selec-
tions of channels from other models too (e.g. extra gauge-bosons).
The major differences between the programs are in the approximations used in the PS
evolution and the hadronization stage. While ISAJET still adopts the original PS algo-
rithm which only re-sums collinear logarithms, both HERWIG and PYTHIA include the
effects of soft logarithms via either an angular-ordered PS in the case of HERWIG, or
an angular veto in the case of PYTHIA. For the hadronization process HERWIG uses
the cluster model, ISAJET the independent fragmentation model and PYTHIA the Lund
string model.
There are also major differences between the generators in the treatment of spin cor-
relation and polarization effects. Both ISAJET and HERWIG include longitudinal po-
larization effects in both SM and Supersymmetric (SUSY) production processes, while
PYTHIA includes both longitudinal and transverse polarizations in many processes. An-
other important difference is in the treatment of the subsequent decay of any heavy par-
ticle produced in the hard process. While HERWIG includes the full correlations in any
subsequent decays using the method described in [102] both ISAJET and PYTHIA only
include these effects in some processes, e.g. W pair production. To extend the method
used in [102] to include transverse polarization also in the HERWIG production stage is
certainly possible.
While these codes will continue to be used in the near future a major programme is under-
way to produce a new generation of general-purpose event generators in C++. The main
aim of it is to provide the tools needed for the Large Hadron Collider (LHC). However,
these tools will be used also for the next generation of LCs. The only program currently
available in C++ which is capable of generating physics results is SHERPA (based on
the APACIC++ [103] PS). Work is however underway to rewrite both PYTHIA [104] and
HERWIG [105] in C++. These programs should be available in the next few years and we
expect them to be the major tools for event generator at a future LC. Given the new design
and structure of these programs the treatment of both spin correlation and polarization
effects should be much better than in the current FORTRAN programs. For example
HERWIG++, should include full polarization and correlation effects in the perturbative
phase of the event using the method of [102].
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3.2 Parton-Level Event Generators

There are a large number of programs available which calculate an individual hard pro-
cess, or some set of hard processes, and are interfaced to one of the general-purpose gen-
erators, most often PYTHIA, to perform the PS and hadronization. It is impossible to
review all such programs here. As many of the two- [106] and four-fermion [107] gener-
ators were used by the LEP collaborations, we refer to the report of the LEP-II MC work-
shop for their detailed discussion. Some programs, e.g., LUSIFER [108], SIXFAP [109],
EETT6F [110] and SIXPHACT [111], have been written specifically for six fermion pro-
cesses. Many of these codes use helicity amplitude techniques to calculate the MEs and
therefore either already include polarization effects or could easily be modified to do so.
Given the vast physics programme of future LCs, it is likely that one will also regularly
resort to programs which are capable of calculating and integrating the MEs for large
numbers of final-state particles automatically. There are a number of such codes available.
– AMEGIC++ [112] makes use of helicity amplitude techniques to evaluate the ME together
with efficient multi-channel phase space integration to calculate the cross section. This
package is part of SHERPA.
– COMPHEP [113] is an automatic program for calculation of cross sections for processes
with up to eight external particles∗. It uses the traditional trace techniques to evaluate the
ME together with a modified adaptive integrator to compute the cross section, so it is at
present not suitable for studies intended to investigate polarization/spin effects. How-
ever, the conversion to the use of helicity amplitudes techniques is currently planned.
– GRACE [114] (with the accompanying packages BASES and SPRING) combines the cal-
culation of MEs via helicity amplitude techniques with adaptive integration.
– HELAC/PHEGAS uses the approach of [115] which is based on the Dyson-Schwinger
equation together with multi-channel integration [116] to calculate the cross section.
– MADGRAPH/MADEVENT [117] uses helicity amplitude techniques for the ME together
with an efficient multi-channel phase space integrator to compute the cross section. These
packages are based on the HELAS [118] subroutines.
– WHIZARD [119] is a multi-channel integration package which can use either COMPHEP,
MADGRAPH or O’MEGA† [121] to calculate the MEs.
All of these codes apart from HELAC/PHEGAS‡ are publicly available. In order to sim-
ulate events these programs need to be interfaced to the general-purpose event gener-
ators. Most use ad hoc interfaces to one of the major general-purpose event generators
with the details varying from one package to another. Recently, generic (i.e., program-
independent) FORTRAN common blocks have been proposed for the transfer of event
configurations from parton level programs to showering and hadronization event gener-
ators [122].
The implementation of polarization and correlation effects differs between these pro-
grams. In general, apart from COMPHEP (as noted), these programs are all based on he-
licity amplitude techniques at some point in the calculation and therefore the inclusion
of both transverse and longitudinal beam polarization is possible even where it is not
currently implemented.

∗COMPHEP can have up to six final-state particles for scattering processes and seven for decays.
†O’MEGA uses the approach of [120] to evaluate the ME but does not include yet any QCD processes.
‡Contact: papadopo@alice.nuclear.demokritos.gr.
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3.3 SUSY

Polarization and spin correlation effects are particularly important in studying SUSY sce-
narios, in order to measure the fundamental parameters of the underlying model. Thus,
it is worth commenting in more detail on the inclusion of these effects in SUSY processes
(hereafter, we assume the particle content of the MSSM).
HERWIG, PYTHIA and ISAJET all include longitudinal polarization effects in SUSY pro-
duction processes. There is also a parton-level program SUSYGEN [123], interfaced to
PYTHIA, which includes these effects.
All these programs also differ in the inclusion of the correlations in the subsequent decays
of the particles. While SUSYGEN includes these correlations using helicity amplitude
techniques and HERWIG uses the method of [102], these effects are generally not included
in either PYTHIA or ISAJET.
Among the parton-level programs, at present only COMPHEP and GRACE include SUSY
processes, although both MADGRAPH and AMEGIC++ can be extended to add the addi-
tional interactions which are needed.
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Chapter 4

Machine Issues

4.1 Electron Polarisation

Author: Jim Clendenin

4.2 Positron Polarisation

Contributions from John Sheppard and Tsunehiko Omori
Contribution from Daresbury lab (D. Scott, J. Clarke) already arrived, but not yet in latex
style transformed (see next page)

65



Chapter 5

Polarisation Measurement

Contribution from Peter Schueler
Contribution from Mike Woods and Ken Moffeit already arrived, but not yet in latex style
transformed (see next pages)
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