News on top quark physics and QCD

Arnd Brandenburg (RWTH Aachen), on behalf of the Top/QCD working group

Montpellier, 16.11.2003

Contributions:

- **P. Skands**: A new model for multiple interactions
- **S. Moretti**: Higher-order weak contributions to hadronic final states
- A. Pineda: Resummation methods at the t tbar threshold
- **A. Hoang**: Three-Loop RGE for the top threshold production current
- S. Boogert: Top mass measurements and luminosity spectra

Top quark talks in other groups:

A. Gay: Simulation of $e^+e^- \rightarrow t\bar{t}H$ final results (Higgs)

M. Roth, F. Boudjema: EW radiative corrections to $e^+e^- \rightarrow t\bar{t}H$ (LoopVerein)

tt production at threshold:

$$\label{eq:alpha} \begin{split} v &\sim \alpha_{s} \sim 0.1 \ll 1 \\ \Rightarrow t\overline{t} \text{ system is non-relativistic, provides a testing ground for (NR)QCD.} \end{split}$$

Goals:

- a determination of m_t (unambigiously defined) with unmatched precision $\Delta m_t \approx 100 \; MeV$
- a precise measurement of the top width Γ_t
- a competitive measurement of α_s
- a constraint on the top Yukawa coupling λ_t

tt threshold scan

Recall: Recent $t\bar{t}$ threshold scan simulation (M. Martinez, R. Miquel [hep-ph/0207315]): **Three-parameter fit** (m_t, α_s , Γ_t): (only exp. errors)

 $\Delta m_t^{1S} = 19 \; \text{MeV}, \qquad \Delta \alpha_s = 0.0012, \qquad \Delta \Gamma_t = 32 \; \text{MeV}.$

Constraint on λ_t rather weak.

Input of that study:

- $\int \mathcal{L} = 300 \text{ fb}^{-1}$, equally distributed in 9+1 scan points
- Neglect imperfect reconstruction of luminosity spectrum
- α_s and Γ_t require theoretical accuracy of threshold cross section $\sim \Delta\sigma/\sigma = \pm 3\%$

Luminosity spectrum (S. Boogert)

Reconstruction of luminosity spectrum (S. Boogert)

Approximate reconstruction method: Bhabbha acollinearity $x = 1 - \theta_A/2\sin\theta$ (Frary-Miller); $x = \sqrt{\cot\theta_e \cot\theta_p}$ (K. Moenig)

Impact on top quark measurement (S. Boogert)

Compare "fake" threshold data with Theoretical cross section ⊗ measured luminosity spectrum **Preliminary results:**

$$\begin{split} m_t &= 174.96 \pm 0.02 \text{ (Shift of } -39 \text{ MeV)} \\ \alpha_s &= 0.1169 \pm 0.0005 \text{ (Shift of } -0.003) \\ \Gamma_t &= 1.4097 \pm 0.0032 \end{split}$$

Open questions and problems

• asymmetric collisions (beam effects): how do boosts of c.m. frame affect distributions?

interpolation limits present analysis;
Toppik too slow!

Threshold cross section: Theory

Recall:

- $(\alpha_s/v)^n$ singularities \Rightarrow breakdown of expansion in number of loops
- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Traditional approach: "Fixed-order"

$$\sigma_{t\bar{t}} \sim v \sum_{n} \left(\frac{\alpha_s}{v}\right)^n \left[1 \text{(LO)}, \ \{v, \alpha_s\} \text{(NLO)}, \ \{v^2, \alpha_s v, \alpha_s^2\} \text{(NNLO)}, \ \dots \right]$$

Teubner, Hoang, Melnikov, Yelkhovsky, Beneke, Signer, Smirnov, Sumino, Nagano, Ota, Yakovlev, Manohar, Stewart

Threshold cross section at NNLO

Large uncertainties in normalization, $(\Delta \sigma / \sigma)^{\text{theory}} \ge 20\%$

Does **not** affect top mass measurement (sensitive to shape) Large logarithms, $\ln\left(\frac{m_t^2}{E^2}\right) \approx 8$, $\ln\left(\frac{m_t^2}{p^2}\right) \approx \ln\left(\frac{p^2}{E^2}\right) \approx 3.8$

Renormalization Group Improved Approach

Aim: reduce uncertainty in normalization (α_s , Γ_t , λ_t)

Summation of $(\alpha_s \ln v)^n$ terms:

 $\sigma_{t\bar{t}} \sim v \sum_{n,m} \left(\frac{\alpha_s}{v}\right)^n \left(\alpha_s \ln v\right)^m \left[1 (LL), \ \{v, \alpha_s\} (NLL), \ \{v^2, \alpha_s v, \alpha_s^2\} (NNLL), \ \ldots \right]$

Uses non-relativistic effective theories of QCD

 $\sigma_{t\bar{t}} \varpropto c(\nu)^2 \, \text{Im} \, G(0,0,\sqrt{s}) + \dots$

 $G(0,0,\sqrt{s})\sim \int d^4 x \, e^{iq.x} \left< 0 | T \mathbf{J}(x) \mathbf{J}^\dagger(0) | 0 \right>$

- Running couplings of potentials in G (NNLL completed)
- Wilson coefficient of current J only at NLL

Manohar, Stewart, Hoang; Pineda, Soto, Brambilla, Vairo

Renormalization Group Improved Approach

Running of Wilson coefficient of current **J** at NNLL: **Partial result**: (Hoang)

"Non-mixing" contributions to NNLL anomalous dimension

Corrections large

Mixing contributions (=higher order running of coefficients in NLL RGE) not completed yet

 \Rightarrow Present theoretical accuracy:

 $\Delta \sigma / \sigma = \pm 6\%$ (previously $\pm 3\%$).

⇒ Full NNLL needed

Threshold cross section at NNLL

$$\begin{split} \sigma_{t\bar{t}} &\sim v \sum_{n} \left(\frac{\alpha_s}{v} \right)^n \left[1 + A \alpha_s^2 \ln v + B \alpha_s^2 \ln^2 v \right. & \leftarrow \text{NLL} \\ & + A' \alpha_s^3 \ln v + B' \alpha_s^4 \ln^2 v + \dots \right] & \leftarrow \text{NNLL} \end{split}$$

A' also computed by Kniehl, Penin, Smirnov, Steinhauser

Open issues:

- completion of NNLL calculation
- electroweak effects, SM, SUSY (Higgs)
- systematic study of distributions, interconnection, "theory" for unstable particles required

Recall:

Current accuracy on $\alpha_s(M_Z) \sim 0.003$. Aim:

 $\Delta\alpha_s(M_Z) \lesssim 0.001$

Current error on $\alpha_s(M_Z)$ dominated by **theoretical uncertainties**.

 \Rightarrow Need 2-loop corrections to $e^+e^- \rightarrow 3$ jets.

Extremely **challenging** calculation, but will be finished in the near future. **Will that be enough?**

Note: $\alpha_s^2 \sim \alpha_{EW}$ \Rightarrow 1-loop electroweak \sim 2-loop QCD Moreover, EW corrections $\sim \alpha_{EW} \ln^2(M_W/\sqrt{s})$

 \Rightarrow At high energies, EW corrections dominate.

Factorisable EW corrections recently computed by Maina, Moretti, Ross.

Electroweak corrections to $e^+e^- \rightarrow 3$ jets

S. Moretti

Electroweak corrections to $e^+e^- \rightarrow 3$ jets: Thrust

S. Moretti

Multiparticle interactions

P. Skands, T. Sjöstrand

- At an LC, γγ collisions will probe hadronic substructure of photon and present backgrounds for other processes
- multiple interactions of partons in γ are possible
- Question: What are the PDFs for a proton or γ with 1 valence quark, 2 sea quarks and 5 gluons kicked out?
- Define probability f_{i1,...,in}(x₁,...,x_n,Q₁,...,Q_n) to find flavours i₁,...,i_n with momenta x₁,...,x_n in hadron/γ probed at scales Q₁,...Q_n,
- we know the case n = 1
- Model f by imposing a set of physically well motivated constraints and fix parameters by comparing to an enormous amount of data from DIS and hadronhadron collisions.
- The new model is available in PYTHIA 6.3

Conclusions

- tt threshold scan: first steps taken to implement "realistic" luminosity spectrum measurement.
- **Theory:** New 3-loop computation of anomalous dimension of $t\bar{t}$ current. Updated theoretical uncertainty $\Delta\sigma/\sigma = \pm 6\%$. Full NNLL calculation needed to improve on this.
- QCD : 1-loop electroweak corrections to $e^+e^- \rightarrow 3$ jets have to be included together with 2-loop QCD corrections at Giga-Z and in particular at high energies to allow for precise measurement of α_s .