

Fermilab • MAY 1-3 2003

Topics

- LHC machine status
- Experiments: physics & status
- Recent results from running experiments
- Present & future of HEP

Local Organizing Committee Kari Mashima - EMAL Hans Warad - FMAL Ames Provation - ANL Program Committee L Ali - DEST Anti- NEST L Alanida - CPM L Aliaida - CPM L Aliaida - CPM L Aliaida - CPM L Aliaida - CEM L Baud-Aurigan - PiAL B. Muller - Data B. Muller - Muller -

🖙 Fermilab

Highlights from the LHC 2003 Symposium

http://conferences.fnal.gov/lhc2003/

Kerstin Hoepfner RWTH Aachen, Physics Institute IIIA

Topics (in total 50 talks)

- 1. Introduction and Status of the LHC
- 2. CMS Status, performance & early physics (8 talks)
- 3. ATLAS Status, performance & early physics (8 talks)
- 4. Physics results and prospects of Tevatron Run II (3 talks)
- 5. Heavy lons: results from RHIC and prospects at the LHC (8 talks)
 → see Heavy lon conference summary
- 6. B-physics: results from e⁺e⁻ machines and from Tevatron, Prospects at the LHC (12 talks)
- 7. Grid tools and the LHC Data Challenges (2 talks)
- 8. Potential LHC accelerator and detector upgrades (3 talks)

Marked in yellow: will be covered in this summary. A partly personal selection

All talks can be found at http://conferences.fnal.gov/lhc2003/

CMS Presentations

- 1. CMS Status
- 2. Inner Tracking and Jet Flavour Tag Performance
- **3. System and Physics Performance**
- 4. Electromagnetic Calorimetry and e/gamma Performance
- 5. Hadronic Calorimetry and jets/Etmiss/tau Performance
- 6. Trigger
- 7. Early Physics and Detector Commissioning
- 8. Physics Reach at High and Very High Luminosities

- M. Della Negra
- M. Manelli
- S. Lacaprara
- G. Dissertori
- D. Elvira
- C. Seez
- K. Hoepfner
- J. Rohlf

CMS Detector at Start-Up

Initial detector is the complete CMS except for the **staged items** (consistent with financial plan):

Consequences of Staging

- Reduced DAQ can handle the lower rate (lower luminosity)
 → Adaptation of trigger thresholds through the whole trigger chain to preserve interesting physics
- Staged pixel endcap reduces redundancy in very forward region
- 4th endcap muon station staged
 → Loss in redundancy, now trigger 3 out of 3 stations required
- RPC for eta > 1.6 staged
 - → Full geometric acceptance provided by CSC system
 - \rightarrow Some loss in efficiency at high eta. Two ways to handle:
 - Accept x10 higher trigger rate
 - Install ME4 (under discussion)

ATLAS Presentations

- 2. Inner Tracking and Jet Flavour Tag Performance
- **3. System and Physics Performance**
- 4. Electromagnetic Calorimetry and e/gamma Performance
- 5. Hadronic Calorimetry and jets/Etmiss/tau Performance
- 6. Trigger
- 7. Early Physics and Detector Commissioning
- 8. Physics Reach at High and Very High Luminosities

- M. Nessi
- **R. Hawkings**
- L. Pontecorvo
- P. Schwemling
- B. Caron
- R. Hauser
- I. Fleck
- B. Zhou

Physics Impact of Staging

Complete detector needed at high luminosity

Detector Commissioning

ATLAS & CMS presented commissioning of subdetectors

Note: Commissioning is already going on

Several steps:

- Test beams
- Mapping of detector material and B-field
- Alignment
- Electronic calibration
- Cosmic running
- One proton beam
- Proton proton collisions

Precision of detector understanding is given by **desired precision of physics results**

Equal error on Higgs mass from W- and top mass measurement:

 $\Delta m_W \approx 0.7 \times 10^{-2} \Delta m_{top}$

Error on top mass: 2 GeV Error on W mass: 15 MeV →This puts severe constraints on detector understanding

Example: ATLAS Inner detector

Alignment :

Degrading of track parameters by misalignment less than 20% \rightarrow Pixel R ϕ alignment 7 μ m \rightarrow SCT R ϕ alignment 12 μ m

Use single μ from W (rate 3 Hz) or B-decays (rate 50 Hz for $p_T > 6$ GeV) After 1 running day track fits result in

	residual	precision
Pixel	20 μ m	1 μ m
SCT	40 μm	2 μ m

Measurement of W mass to 20 MeV: \rightarrow Knowledge of momentum scale to 0.02%

B-Field:

1.Mapping with Hall probes \rightarrow 0.05% 2.With tracks: Using fit B-field can be reconstructed with precision of 4 Gauss, i.e. 0.02 %

Map ID amount of material:

- W \rightarrow ev decays to measure E/p from calorimeter (EM) and ID
- E/p distribution very sensitive to amount of material at different radii
- Final accuracy of 0.02% needs understanding of ID material distribution of 1%
- Within a few weeks of data taking this precision will be reached

Example: CMS ECAL Calibration

1. Testbeam: Very precise (ΔE/E<0.1 %) for a small sample (~1/4) Extrapolation to CMS, target value of 2% precision

Physics in 2007

Results on most important variables will stem from Tevatron, HERA, Belle, BaBar, LEP

Expected precision:

W mass	20 – 30 MeV	LEP + Tevatron
Top mass	2 GeV	Tevatron
Structure functions:	Few percent up to Q ² = 10 ⁴ GeV ²	HERA
Higgs	possible exclusion up to 175 GeV, discovery unlikely, but hint may be there	Tevatron

What can ATLAS & CMS achieve with 10 fb⁻¹?

Higgs @ LHC Start-up

SM Higgs Discovery Reach (5σ): ATLAS +CMS

114 GeV < m_H < 1 TeV

m_H ~ 115 GeV - combine several channels

200 GeV < m_H < 600 GeV -discovery in H \rightarrow ZZ \rightarrow I⁺I⁻I⁺I⁻ -confirmation in H \rightarrow ZZ \rightarrow I⁺I⁻ jj

m_H > 600 GeV

- 4I channel statistically limited
- H \rightarrow ZZ \rightarrow I⁺I⁻ $\nu\nu$
- H \rightarrow ZZ \rightarrow I^+I^- jj , H \rightarrow WW \rightarrow
- lv jj (150 x BR than 4l channel)

$H_{SM} \rightarrow 4$ Leptons with 10 fb⁻¹

Low Mass Higgs

 $M(Higgs) \sim 115 \text{ GeV}$, favoured by LEP

Several channels give ~ 2 σ significance \rightarrow observation of all channels important to extract convincing signal in first year

 $H \rightarrow \gamma \gamma$ relies only on electromagnetic calorimeter

	$H \rightarrow \gamma \gamma$	$ttH \rightarrow ttbb$	$qqH \rightarrow qq\tau\tau$	
			(ll + l-had)	
S	130	15	~ 10	
В	4300	45	~ 10	
S/ √B	2.0	2.2	~ 2.7	
$K - factor \equiv \frac{\sigma_{NLO}}{\kappa} \approx 2$ not included				
σ_{LO}				

Ivor Fleck, ATLAS Early Physics

Vector Boson Fusion

Vector Boson Fusion

ATLAS Recent studies demonstrate that Signal significance $\int L dt = 10 \text{ fb}^{-1}$ $qqH \rightarrow qq\tau\tau$ vector boson fusion channels may (no K-factors) be accessible in the low mass $qqH \rightarrow qqWW$ ATLAS region already in the first year. All channels Several ATLAS studies to improve performance For m(Higgs) = 115 GeV 10 combined significance ~ 5σ 5 **Results are conservative:** - K-factor not included 1 - very simple analyses used 00 100120 140 160 180 20 V/c^2)

Ivor Fleck, ATLAS Early Physics

m_{Higgs} (GeV)

MSSM Higgs

SUSY 5 Higgs: h, H, A, H⁺⁻ Many more decay modes.

Example: bbH final states enhanced by $tan^2\beta$ in MSSM w.r.t. SM

A / H $\rightarrow \mu \mu$ in bbH_{SUSY} Production

Search already possible with 10 fb⁻¹

Requires b-tagging, efficient track reconstruction without ultimate track reconstruction resolution New decay channel H/A $\rightarrow \mu\mu$ covers large part of region not excluded by LEP Muon spectrometer crucial

Lower SUSY masses

Position of peak correlated to SUSY mass scale

$$\mathsf{M}_{\mathsf{SUSY}} \equiv \min\left(m\left(\widetilde{q}\right), m\left(\widetilde{g}\right)\right)$$

Measurement of SUSY mass scale \approx 20% (mSUGRA) with 10 fb⁻¹

Low trigger thresholds necessary to measure mass scale in overlap region with Tevatron (400 GeV)

Calorimeter must have good hermeticity up to $|\eta|=5$

The Startup of Run II

Snapshot of

Tevatron collider CDF detector DØ detector & First Run II results

J.Oian, C.Gerber, G.Veramendi

Tevatron Complex

New for Run II:

Main injector (150 GeV proton storage ring) replaces main ring

New permanent magnet storage ring for pbar accumulation (commiss.)

Increased center-of-mass energy (1.8 \Rightarrow 1.96 TeV)

More bunches $(6 \Rightarrow 36, 396 \text{ ns crossing time})$

Higher luminosity Run 2 goal: 3 - 4E32 cm⁻² s⁻¹ Run 1 maximum: 2.4E31 cm⁻² s⁻¹

Integrated Luminosity

Luminosity

CDFII Detector

Inner Silicon Intermediate Silicon

Retained from Run I

Solenoid (1.4 Tesla) Central calorimeters Central muon detectors

New in Run II New central tracker

8 layers of 3-D silicon up to |η|=2 End plug calorimeter Intermediate muon detectors Time of flight system Front-end electronics Trigger and DAQ

DØ Run II Detector

Retained from Run I LiAr Calorimeter Central muon detector Muon Toroid

New for Run II 2 T Magnet Central tracker Preshower detectors Forward muon detector Forward proton detector Front-end electronics Trigger and DAQ

It's a qualitatively new experiment.

Vertexing Performance

Jet 2 SV IP MTC IP Jet 1 SV

μ +jets top candidate

C.Gerber, D0

Track and Vertex Triggers

Many Preliminary Results

Top quark physics

Re-discovered the top quark, preliminary studies on properties, ...

Electroweak

W/Z productions, di-boson production, e+e- forward-backward asymmetry, ...

New phenomena searches

Higgs bosons, supersymmetry, leptoquark, large extra dimensions, Z', ...

Heavy flavor

resonance reconstructions, masses, lifetimes, branching fractions, rare decays, ...

QCD

jet structure, inclusive jet cross section, dijet mass distribution, ...

See the talks by M. Bishai, G. Borissov, C. Gerber, G. Veramendi for details

W/Z Production

Standard candle for high pT

Ideal for calibration and precision measurements

- Simple event topologies
- Easy trigger and identification
- High rate and small background

Jianming Qian, Fermilab

W/Z Cross Section

C. R. Hamberg, W.L. van Neerven and T. Matsuura, Nucl. Phys. B359 (1991) 343

Jianming Qian, Fermilab

Top Quark Physics

Top Pair Cross Section

μμ

eeeμ

dileptons

e+jets $\mu + jets$

 $e + jets/\mu$ $\mu + jets/\mu$

lepton+jets

All channels

 σ (pb)

DØ Run II Preliminary

Jianming Qian, Fermilab

First Look at mtop

CDF made a preliminary measurement of the top quark mass using the likelihood method

 $m_{top} = 171.2 \pm 13.4 \pm 9.9 \text{ GeV} / \text{c}^2$

(without using b-tagging information)

Consistent with CDF/DØ combined Run I results

 $m_{top} = 174.3 \pm 3.2 \pm 4.2 \text{ GeV} / \text{c}^2$

and with the recently improved DØ Run I result

 $m_{top} = 180.1 \pm 3.6 \pm 4.0 \text{ GeV} / \text{c}^2$

Dijet Mass Distribution

- Dijet mass distribution is a tool for QCD test and is also sensitive to high mass resonances.
- Both CDF and DØ have measured dijet cross section in Run II. The distributions agree well with the expectations.

B-Physics

Results from B-factories Tevatron results & prospects LHC Prospects

B-Physics and the Unitarity Triangle

B-factories

- Now ~100 fb⁻¹ per experiment
- Should have ~500 fb⁻¹ by 2005-2006, 1000-2000 fb⁻¹ by end of decade

C.Campagnari, BaBar & Belle Results and Prospects

Results shown:

- Luminosity BaBar and Belle
- Lifetimes and mixing
- Sin2 β results
- Working towards sin2α
- Comments on γ
- V_{ub}

Summary $\sin 2\beta$ in $b \rightarrow c\overline{c}s$

Prospects:

- Already a precision measurement
 - But still statistically limited

🖥 BABAR <

- Will be improved
- Measurements in other modes will improve as √luminosity
 - Maybe faster, as techniques improve
- Improved results in the
 b → s modes will be
 particularly interesting!

Claudio Campagnari, BaBar & Belle Results and Prospects

B-Factories: Conclusions BABAR

- The B-factories have gone through a very successful first three years
- Today I showed you only a small fraction of their physics program, there is much more
- We are looking forward to increases in luminosity, eventually x10-20 more data
- The SM is still alive and well, but we'll continue poking at it

Some B-physics better done at hadron machines (angle γ , Bs, etc.)

Hadronic B-factories: CDF, D0, LHCb, ATLAS, CMS

Claudio Campagnari, BaBar & Belle Results and Prospects

Heavy Flavor at Tevatron

Expect a lot more for the summer...

Guennadi Borissov, B-Physics at D0

 $\tau = 1.76 \pm 0.24$ (stat) ps

Mary Bishai, Beauty and Charm Physics at CDF Run II

CDF B-Physics

- Key triggers and detector performances well understood. Better triggers and larger kinematic coverage compared to Run I.
- Masses, lifetimes, BRs: Worlds best B_s mass, lifetime and worlds largest sample of Λ_b with ONLY 65 pb⁻¹. Current best limit on FCNC D⁰ → μ μ decay.

- CKM matrix physics: Key hadronic signals $B_s \rightarrow D_s^* \pi$
 - and B \rightarrow h⁺ h⁻ established.

Particle	Measured mass [MeV/c ²]	
B ⁺	5280.6 ± 1.7 (stat) ± 1.1 (syst)	
B ⁰	5279.8 ± 1.9 (stat) ± 1.4 (syst)	
B _s ⁰	5360.3 ± 3.8 (stat) + 2.1 – 2.9 (syst)	
$M(D_s^{\pm}) - m(D^{\pm})$	99.41 ± 0.38 (stat) ± 0.21 (syst)	
Particle	Lifetime	
B _s	1.26 ± 0.20 (stat) ± 0.02 (syst) ps	
Λ_{h}	xxx + 0.13 (stat) + 0.07 (syst) ps	
0	$\rightarrow \rightarrow $	
Decay	Branching fraction	

The Next Generation: LHCb Re-Optimization

Tracking Performance still good

Average efficiency = 92 % Efficiency for p>5GeV > 95% Total ghost rate = 16%Ghost rate $p_T > 0.5$ GeV ~ 8%. Large event to event fluctuations.

Physics with Hadron Identification

- Two independent detectors
 - "RICH1": Aerogel and C₄F₁₀
 - "RICH2" : CF₄

$$\cos(\theta_c) = \frac{1}{n \cdot v/c}$$

- Require π/K separation for 1-150 GeV/c
- Overall the 3 radiators provide excellent π/K separation over the full momentum range

Chris Jones, Particle ID in LHCb

Final State Reconstruction is maintained

Good tracking performance essential input for physics analysis:

LHCb Physics

Heavy Ion Physics

Results from RHIC ALICE Performance & Physics ATLAS, CMS HI Programme

Bulk Particle Production @ RHIC

- 1. Initial Conditions/Energy Density: > 5 GeV/fm³
- 2. Thermalization:
- 3. Hadrochemistry: $T_{ch} \sim 180 \text{ MeV}, m_B \sim 25 \text{MeV}$
- 4. Expansion Dynamics: $T_{th} \sim 110 \text{ MeV}$, $<b_T > \sim 0.6c$

Consistent *Description* of Final State

But we're missing a picture of *Dynamical Evolution*

<t_{fo}>~ <u>10 fm/c</u>, Dt_{fo}~ <u>0-3 fm/c</u>

LHC Heavy Ion Presentations

- **1. ALICE Physics Reach**
- 2. Muon Spectrometer
- 3. TOF System
- 4. Jet Physics in ALICE

- C. Blume
- A. Morsch
- C. Williams
- T. Cormier

ATLAS + CMS Heavy Ion Programme

ALICE Physics

Summary of LHC 2003 Symposium

A long road, worth the journey. We will see familiar landscape with new peaks.

Conference participants in front of the Wilson hall.