

The EDG Workload Management System: release 2

Review of WP1 WMS architecture

- WP1 WMS architecture reviewed
 - To apply the "lessons" learned and addressing the shortcomings emerged with the first release of the software, in particular
 - To increase the reliability problems
 - To address the scalability problems
 - To support new functionalities
 - To favor interoperability with other Grid frameworks, by allowing exploiting WP1 modules (e.g. RB) also "outside" the EDG WMS

WP1 WMS reviewed architecture

Job subm

UI

edg-job-submit myjob.jdl

Myjob.jdl

JobType = "Normal";

Executable = "\$(CMS)/exe/sum.exe";

InputSandbox = {"/home/user/WP1testC","/home/file*", "/home/user/DATA/*"};

OutputSandbox = {"sim.err", "test.out", "sim.log"};

Requirements = other. GlueHostOperatingSystemName == "linux" &&

other. GlueHostOperatingSystemRelease == "Red Hat 6.2" &&

other.GlueCEPolicyMaxWallClockTime > 10000;

Rank = other.GlueCEStateFreeCPUs;

Job Status

submitted

Job Contr.

CondorG

Inform.

Job Description Language (JDL) to specify job characteristics and requirements

CE characts & status

SE characts & status

Storage Element

Addressing reliability and scalability

- No more a monolithic long-lived process
 - Some functionalities (e.g. matchmaking) delegated to pluggable modules
 - Less exposed to memory leaks (coming not only from EDG software)
- No more multiple job info repositories
 - No more job status inconsistencies which caused problems
 - Also improvement from a user perspective (e.g job status not OutputReady, but it was possible to retrieve output sandbox)
- Reliable communications among components
 - Done via the file system (filequeues)
 - For example jobs are not lost if the target entity is temporary down:
 when it restarts it gets and "process" the jobs

Addressing reliability and scalability

- ◆ No more STL string problems on SMP machines
 - Which caused problems to the RB and required the cleaning of internal databases and loss of all active jobs
 - WP1 sw built with gcc 3.2
- Integration of newer (v. 6.5.1) CondorG (deployed via VDT)
 - Better job submission system
 - No more 'max 512 concurrent jobs' limit
 - Actually still some issues to address (already in touch with Condor developers)

Other improvements wrt release 1.x

- Security of sandbox files
 - Not possible anymore to access sandbox files of other users
 - Done via a patched gridftp server and via a proper grid-mapfile in the "RB node"
- Addressed disk space mgmt problem on the "RB node"
 - Could get completely filled with sandbox files
 - Problem addressed:
 - WMS admin can specify a maximum size for the input sandbox (if greater: job refused)
 - WMS can also specify a percentage of disk: if free disk less than this value, new jobs refused
 - Also possible to rely on disk quota (WMS admin can set disk quota for the various users)
 - Also possible to rely on "dynamic" disk quota (WMS admin can not set disk quota for the various users: when a job is submitted, its quota is automatically increased of a certain amount of space, which is released when job completes)
 - Also possible to run from time to time (e.g. via a cron job) a purger, which cleans "old" sandbox directories (configurable policies)

Other improvements wrt release 1.x

Improvements in LB

- No more one LB server per "RB", but possible to have more LB servers
 - Could be useful in case of LB overloaded
- Extended querying capabilities
 - E.g. Give me all jobs marked as 'XYZ' (user tag) and running on CE1 or C'E2
 - Necessary to create custom indices
 - LB server refuses to process a query which would not utilize any index to prevent overloading the underlying database engine
- R-GMA interfaces
 - LB server capable of feeding the R-GMA infrastructure with notifications on job state changes

Proxy renewal

- Fixed (very silly) problem of release 1 (renewed proxy was too short)
- Reliable proxy renewal service (doesn't forget about registered proxies in case of service restart)

Other improvements wrt release 1.x

- Other typical rel. 1 problems fixed
 - CE chosen in a random way among the CEs which meet all the requirements and have the same best rank
 - No more JSSparser stuck → status of jobs don't updated
 - The problem was in PSQL, not used anymore
- Other fixes and improvements

- Much better stability sought in our internal tests
- But difficult for us to perform stress tests in our small WP1 testbed
 - Prepared to address problems we will find when performing the real integrated stress tests on the real big testbed

Other improvements/changes

- Integration with WP2 software
 - Interaction with WP2 RLS (instead of the "old" RC to have the logical → physical file name mappings)
 - Possible to rely on the WP2 getAccessCost as JDL rank
 - I.e. getAccessCost finds the best CE among the ones meeting all the requirements (taking into account data location)
- ◆Integration with R-GMA (wrt Information Services) completely transparent for WP1 sw (via GIN, GOUT mechanisms)
- New Glue schema
 - → JDL expressions must rely on this new IS schema

New functionalities introduced

- User APIs
 - Including a Java GUI
- "Trivial" job checkpointing service
 - User can save from time to time the state of the job (defined by the application)
 - A job can be restarted from an intermediate (i.e. "previously" saved) job state
 - Presented at the EDG review
- Gangmatching
 - Allow to take into account both CE and SE information in the matchmaking
 - For example to require a job to run on a CE close to a SE with "enough space"
- Output data upload and registration
 - Possible to trigger (via proper JDL attribute) automatic data upload and registration at job completion

New functionalities introduced

- Support for parallel MPI jobs
 - Parallel jobs within single CEs
- Grid accounting services
 - Just for economic accounting for Grid User and Resources
 - The users pay for resource usage while the resources earn virtual credits executing user jobs
 - No integration with "brokering" module
- Support for interactive jobs
 - Jobs running on some CE worker node where a channel to the submitting (UI) node is available for the standard streams (by integrating the Condor Bypass software)

Future functionalities

- Hooks in place for other future functionalities
 - Dependencies of jobs
 - Integration of Condor DAGMan
 - "Lazy" scheduling: job (node) bound to a resource (by RB) just before that job can be submitted (i.e. when it is free of dependencies)
 - Support for job partitioning
 - Use of job checkpointing and DAGMan mechanisms
 - Original job partitioned in sub-jobs which can be executed in parallel
 - At the end each sub-job must save a final state, then retrieved by a job aggregator, responsible to collect the results of the sub-jobs and produce the overall output
 - Integration of Grid Accounting with "matchmaking" module
 - · Based upon a computational economy model
 - Users pay in order to execute their jobs on the resources and the owner of the resources earn credits by executing the user jobs
 - To have a nearly stable equilibrium able to satisfy the needs of both resource `producers' and `consumers'
 - Advance reservation and co-allocation
 - Globus GARA based approach
- Development of these new functionalities already started (most of this software already in a good shape)

Conclusions

- ◆ Revised WMS architecture
 - To address emerged shortcomings, e.g.
 - Reduce of persistent job info repositories
 - Avoid long-lived processes
 - Delegate some functionalities to pluggable modules
 - Make more reliable communication among components
 - To support new functionalities
 - · APIs, Interactive jobs, Job checkpointing, Gangmatching, ...
 - Hooks to support other functionalities planned to be integrated later
 - DAGman, Job partitioning, Resource reservation and co-allocation, ...