ATLAS Grid Planning

- ATLAS has used in "production mode" different Grids with simulation jobs
 - NorduGrid, US VDT like, EDG
- Similar use of the same Grids is in progress for the reconstruction
- ATLAS intends to use LCG-1 as much as possible as soon as it will be available (but the use of the other Grids will not disappear at once)
- The next DC (DC2) is foreseen for start 2004: a "usable" (75% effic?) LCG-1 with the agreed functionality (GDB WG1) should be available no later then September, to avoid running too much risks.

Layout

- DC1-2 Figures
- Work done and planned for each Grid flavor
 - Nordugrid, US Grid, EDG
- Production/Grid tools development status and plan
 - Magda (replica catalogue), AMI (Metadata DB), Chimera (VDC), GANGA
 - ATCOM :prod.scripts generation system, Magda, AMI interfaced
- Toward a Grid production (analysis) system

Figures for DC1 and beyond

- DC1 simulation
 - 10⁷ events, 3 10⁷ single particles: about 550 kSp2K months (100% effic.)
 - with pileup (10³³*2 & 10³³*10) 1.3 & 1.1 M events: about 40 kSp2K months (100% effic.)
- Reconstruction
 - Done till now 1 M (high prio. events) for each luminosity: about 50 kSp2K months (100% effic.): redo in the next few months, partly with Grids
 - At the some time reconstruct a fraction of the lower priority, partly with Grids too
- DC2 start in 2004, 2-3 times DC1 CPU, then full reconstruction
 - Use LCG-1 as much as possible, still some Grid activity foreseen outside LCG

Nordugrid in DC1 and beyond

- Fall 2002: NorduGrid is no longer considered a "test", but rather a facility
 - Non-ATLAS users at times are taking over
 - Simulation of the full set of low ET dijets (1000 jobs about 25 hours each, 1 output partition each) August 31 to September 10
- Winter 2002-2003: running min. bias pile-up
 - Prevoius sample + 300 jobs dijets ET>17 GeV Done by March 5th
 - Some sites can not accommodate all the needed min. bias files, hence jobs are not really data-driven any longer
- As we are speaking: running reconstruction
 - The NorduGrid facilities and middleware are very reliable (people at times forget it's actually a Grid setup)
 - Processing the data simulated above + other 1000 input files
 - No data-driven jobs
- The biggest challenge to "generalize" the ATLAS software to suit everybody and to persuade big sites to install it
- These are **no tests**, but a **real** work, as there are no alternatively available conventional resources

13-May-2003

Barcelona EDG Conference L.Perini

Nordugrid resources (O.Smirnova)

- Harnesses nearly everything the Nordic academics can provide:
 - 4 dedicated test clusters (3-4 CPUs)
 - Some junkyard-class second-hand clusters (4 to 80 CPUs)
 - Few university production-class facilities (20 to 60 CPUs)
 - Two world-class clusters in Sweden, listed in Top500 (200 – 300+ CPUs)
- Other resources come and go
 - Canada, Japan test set-ups
 - CERN, Russia clients
 - It's open, anybody can join or part
- People:
 - the "core" team grew to 7 persons
 - Sysadmins are only called up when [ATLAS] users need an upgrade

Barcelona EDG Conference L.Perini

DC1 and GRID in U.S. (K.De mid-april)

* Dataset 2001: 10^6 jet_25

- □ simulated at BNL using batch system
- □ lumi10 pileup done using grid at 5 testbed sites
- □ finishing lumi10 QC right now
- □ reconstruction started using BNL batch system
- □ grid reconstruction using Chimera starting soon
- * Dataset 2002: 500k jet_55
 - □ simulated at BNL using batch system
 - □ 30% lumi02 piled-up using grid
 - □ to be finished after 2001 is completed
- * Datasets 2107, 2117, 2127, 2137: 1 TeV single particles
 - □ simulated on grid testbed. Pile-up?
- * Dataset 2328,2315: Higgs, SUSY
 - □ simulation completed, pile-up after dataset 2001

U.S. ATLAS Grid Testbed (K.De)

GridView (NG)

Geographic View Hierarchical View MDS View

*BNL - U.S. Tier 1, 2000 nodes, 5% ATLAS (100), 10 TB

IDENTIFY REPORT OF SET UP: IDENTIFY RE

*Boston U. - prototype Tier 2, 64 nodes

*Indiana U. - prototype Tier 2, 32 nodes

*UT Arlington - 20 nodes
*Oklahoma U. - 12 nodes
*U. Michigan - 10 nodes
*ANL - test nodes
*SMU - 6 nodes
*UNM - new site

Grid Quality of Service (K.De)

* Anything that can go wrong, WILL go wrong

- During 18 days of grid production (in August), every system died at least once
- □ Local experts were not always be accessible
- Examples: scheduling machines died 5 times (thrice power failure, twice system hung), Network outages multiple times, Gatekeeper died at every site at least 2-3 times
- Three databases used production, magda and virtual data. Each died at least once!
- Scheduled maintenance HPSS, Magda server, LBNL hardware, LBNL Raid array...
- □ Poor cleanup, lack of fault tolerance in Globus
- These outages should be expected on the grid software design must be robust
- We managed > 100 files/day (~80% efficiency) in spite of these problems!

GRAT Software (K.De)

- GRid Applications Toolkit
- * Used for U.S. Data Challenge production
- Based on Globus, Magda & MySQL
- * Shell & Python scripts, modular design
- Rapid development platform
 - Quickly develop packages as needed by DC
 - **#** Single particle production
 - # Higgs & SUSY production
 - # Pileup production & data management
 - **#** Reconstruction
- * Test grid middleware, test grid performance
- Modules can be easily enhanced or replaced by Condor-G, EDG resource broker, Chimera, replica catalogue, OGSA... (in progress)

Middleware Evolution of U.S. Applications (K.De)

G

Used in current production software (GRAT & Grappa)

Tested successfully (not yet used for large scale production)

Under development and testing

Tested for simulation (may be used for large scale reconstruction)

Conclusion ATLAS US Grid(K.De)

- Large scale (>10k Cpu days, >10TB) grid based production was done by U.S. testbed
- Grid production is possible, but not easy right now need to harden middleware, need higher level services
- * Many tools are missing monitoring, operations center, data management
- * Requires iterative learning process, with rapid evolution of software design
- Pile-up was a major data management challenge on the grid moved >0.5 TB/day
- Successful so far but slower than plan
- * Continuously learning and improving
- * New Chimera based product being tested
- Many more challenges coming up!

ATLAS EDG

- ATLAS was the first experiment to test EDG in production mode (back to July 2002)
 - Almost 1000 simulation jobs (20-30 hours each) submitted over 8 months with evolving EDG releases: very valuable feedback provided
 - The last systematic test (130 jobs in 2 weeks end February):
 - Only < 5% problems traceable to EDG m/w
 - Still a lot of instability, most "local problems" (disk full, machine down, failed file transfer): week 1 80% success, week 2 < 25% !!!
 - Work started for partial production of ATLAS reconstruction (ATHENA) with EDG

ATLAS reconstruction on GRID

Why

• Check stability of grid for a real production with ATHENA (reconstruction phase of ATLAS DC1)

What has been done

• Test (few jobs, 5-6) at RAL, Lyon, CNAF. Only few technical (but time consuming) problems (WNs disks full...)

To be done: Real production

• install RH 7.3 and ATLAS 6.0.3 on the WNs (currently creating and testing LCFGng profiles, installation already done at Lyon where LCFG is not used)

- copy and register input files (from CERN & RAL)
- submit the jobs

13-May-2003

ATLAS reconstruction on GRID

Involved sites:

Milan, Rome, Cambridge, CNAF, RAL, Lyon Selected input data sample of 20k QCD di-jets at different energies simulated at RAL and CERN (not high priority) 500 GB

Time expected to complete all the jobs ~5-6 days with 15-20 nodes

Activity on Grid tools

- Much work done:
 - MAGDA (US), AMI (Grenoble) used already on the current productions (independent from Grids): ATLAS intend to evolve them as thin layers for interface to LCG (but not exclusively)
 - Other tools in different stages of development and test, not all aimed at general Atlas use
 - GANGA (ATLAS-LHCb UK main effort,) is seen as a promising framework
 - Chimera (US) is aimed to exploit Virtual Data ideas
 - A coherent view of tool use and integration between themselves, with the Grid and with ATHENA is starting to emerge, but will need more work and thinking.

GANGA (K.Harrison)

- The Indian goddess Ganga descended to Earth to flow as a river (English: Ganges) that carried lost souls to salvation

- Ganga software is being developed jointly by ATLAS and LHCb to provide an interface for running Gaudi/Athena applications on the Grid

- ⇒ Deal with all phases of a job life cycle: configuration, submission monitoring, error recovery, output collection, bookkeeping
- ⇒ Carry jobs to the Grid underworld, and hopefully bring them back
- Idea is that Ganga will have functionality analogous to a mail system, with jobs having a role similar to mails
 - ⇒ Make configuring a Gaudi/Athena job and running it on the Grid as easy as sending a mail

Design considerations (K.Harrison)

- Ganga should not reproduce what already exists, but should make use of, and complement, work from other projects, including AtCom, <u>AthASK</u>, <u>DIAL</u> and <u>Grappa</u> in ATLAS
- ⇒ Should also follow, and contribute to, developments in <u>Physicist Interface (PI)</u> project of LCG
- The design should be modular, and the different modules should be accessed via a thin interface layer implemented using a scripting language, with Python the current choice
- Ganga should provide a set of tools that can be accessed from the command line (may be used in scripts), together with a local GUI and/or a web-based GUI that simplifies the use of these tools
- Ganga should allow access to local resources as well as to the Grid

Tentative Ganga architecture (K.Harrison)

Typical CHIMERA functionality (R.Gardner)

- Condor DAGs are created which handle
 - Data movement: all steps needed to move files from the storage elements where they currently exist to the storage element where they are accessible to the execution nodes of the execution site
 - **Execution:** execute all derivations in the DAG
 - Cataloging: register all output data products in a replica catalog

Outline of CHIMERA Steps (R.Gardner)

- Define transformations and derivations
 - user scripts write VDLt
- Convert to XML description
- Update a VDC
- Request a particular derivation from the VDC
- Generate abstract job description, DAX
- Generate concrete job description, DAG
- Submit to DAGMan

Barcelona EDG Conference L.Perini

Toward an ATLAS Grid production and analysis system

- ATLAS has encouraged the development of diverse tools
 - often born with interface to one specific Grid flavor
- ATLAS has kept the general production system as simple as possible
 - Avoid building complex interfaces to a diverse and rapidly evolving m/w
 - Provisional solutions in HEP risk to eternize themselves....
 - Avoid ATHENA dependences from specific m/w
 - Foster m/w convergencies and common interfaces
- LCG has now to grant the framework for finally planning an ATLAS production and analysis system:
 - We expect to start with the m/w services decided in WG1-GDB (which EDG V2 is designed to implement)
 - well defined interfaces and agreed planes of evolution (EGEE)
 - Fall-back interim solutions with severely descoped Grid functionality risk to be of limited interest for us
 - All the needed effort & support has to go in EDG V2

13-May-2003