

GRID planning in LHCb

Andrei Tsaregorodtsev, CPPM, Marseille

EU DataGrid Internal Project Conference, Barcelona, 12-16 May 2003

Outline

- The LHCb Data Challenges
- The LHCb MC production system DIRAC
- Using of the EDG and LCG-1 platforms
- Future plans
- Conclusion

DC 2003 (1)

- Data to support Physics and Trigger TDRs for September 2003
- GEANT3 simulation" + "C++ reconstruction"
- 50 days running from 13 Feb 2003-04-15
- 17 centres in production configuration (CERN, UK, FRANCE, Italy, Germany, Holland, Russia, Brazil)
- 36,600 jobs ran
- ♦ 34,000 ran successfully 92% success
 - **2% 50 days running from 13 Feb 2003-04-15 LHCb s/w problems**
 - **6%** mixture data transfer + site + farm problems

- 45M events fully simulated and reconstructed
 - ~5 sec of LHC collisions
- ~250,000 files produced
 - 100 MB /file
 - ~20 TB data (Castor, HPSS)
- Total CPU used 1.4 M hours 1GHz PC (equivalent to ~1000 CPUs for 50 days)
- DC2003 production continues at low level
 - ~30K events per day;
 - Additional physics channels;
 - Special detector running conditions.

DC 2004 (1)

- When: Q1/Q2 2004
- What for: DC 2004 will be used to justify the LHCb Computing Model to be presented in the Computing TDR in Q1/2005
- DC scale:
 - "3 x DC3"
 - **50M B-events + 100M minimum bias events;**
 - ~500K files produced;
 - ~200TB of data (~100TB to be stored in MSS);
 - >2000 concurrent jobs in >20 centers continuously running during 3-4 months

DC 2004 (1)

Goals:

- New GEANT4 based simulation
- "Realistic" dataflow of recorded raw/triggered events;
 - New raw event data model;
- Different dataflows:
 - Various streams for physics subgroups;
 - Data stripping, clustering;
 - Event tag collections.
- Tests of performance of the simulation and reconstruction software;
- Tests of the production tools.

DIRAC

- DC2003 and DC2004 will be done with DIRAC
- Distributed MC production system for LHCb
 - Production tasks definition and steering;
 - Software installation on production sites;
 - Job scheduling and monitoring;
 - Data transfers and bookkeeping.
- Automates most of the production tasks
 - Minimum participation of local production managers
- PULL rather than PUSH concept for jobs scheduling

DIRAC architecture

DIRAC interface to the Grid (1)

DIRAC has EDG testbed as one of its production sites:

- Via Agent running on a Grid portal;
- We use our own job monitoring and logging facilities;
- Data produced on the Grid are copied to Castor and their metadata is added to the LHCb bookkeeping database to be available outside the Grid.

We will continue to keep EDG and later LCG-1 as a "back-end" computing resource to DIRAC

- Use as one whole "black box";
- Synchronization of the Grid and DIRAC Replica Catalog.

- We would like to explore the possibility to use the Grid services with not necessarily using the central RB:
 - Using DIRAC to schedule jobs directly to CE's
 - Interested in using the Grid services:
 - DataSet Metadata Catalog (if any);
 - Data management (Replica Manager, RLS);
 - R-GMA based information system;
 - Security infrastructure.

Conclusions

- DIRAC system behaved successfully in the DC just finished and is being prepared for the future DCs;
- LCG-1 platform is seen as one of the "backend" production site to DIRAC;
- We are also studying the possibility to use some of the Grid middleware services as components of our production system.