

"LHC analysis in the times of ubiquitous Grids"

Or should this be

LHC Analysis in the era of the Ubiquitous Grid

Outline

- Random stuff you already know about the grid
- Stuff you already know about analysis

One or Many Grids?

A nuisance at present

Success would mean we don't care

- · How many webs are there?
 - There's only one HTTP (well almost)

Ubiquitous grids implies

- An agreed set of <u>standard</u> protocols (XML's) for interenterprise collaborative computing
 - authentication, authorisation, accounting/logging
 - · resource description, data access, workflow
- Security and trust
- Driven in large part by HEP developments/experience

Production Data Processing

Processing 10 PB is hard + time consuming

- · Can't all do what we want when we want it
 - Resource limits will tend to impose a traditional model
 - Raw Data -> Processed data -> DST -> mini-DST -> ntuple
 - No requirement to do it in a historic way
 - Do it all once (asap)
 - "pointer" not copy ... brings new power
 - Copies will be taken Need to keep track of provenance
- We can build the system
 - · Virtual, location independent, standard
- But coordinating resources of this scale is not trivial
 - This is not a new problem...

To Solve: the HENP "Data Problem"

While the proposed future computing and data handling facilities are large by present-day standards,

They will not support FREE access, transport or reconstruction for more than a Minute portion of the data.

- → Need for effective global strategies to handle and prioritise requests, based on both policies and marginal utility
- → Strategies must be studied and prototyped, to ensure Viability: acceptable turnaround times; efficient resource utilization

Problems to be Explored; How To

- → Meet the demands of hundreds of users who need transparent access to local and remote data, in disk caches and tape stores
- Prioritise thousands of requests from local and remote communities
- → Ensure that the system is dimensioned "optimally", for the aggregate demand

Why do we need a Grid

Grid is next step of virtualisation and other trendy things

Virtualisation:

Grid is the next step...

- Read those bytes from that address
- · Read the Nth entry from that file
- · Return the Nth muon momentum from that file
- · Read the momentum of the Nth entry from last weeks muon file
- · Find last weeks muons and get me the momentum of the Nth muon
- · Go forth and find me the most recent QA'd momentum of the Nth muon from last week

even Microsoft...

- AWT deprecated
- Programme to .NET
- · Location independence
- Easy to move forwards -> distributed/internet computing

Service Based Architecture

Focus on what you want to do, not how (or where) you want to do it Service based architecture based on loosely couple services.

Why?

- · Can always build a tightly coupled system on top
- But then have to deal with the loosely couple nature (failures)
- · Whole system will (should) not come down with first crash

Virtualisation will allow us to scale/adapt the system for the long term SBA will make scaleable and robustness more likely

PPNRC What does the Grid give us?

Standard ways to use distributed resources

- Install the standard "stuff"
- Set the appropriate flags
- Central production can run the whole thing

Use systems even when there's no postdoc!

Stuff?

- AAA/resource access
 - Non expt specific
 - Non HEP specific
- "standard" sysadmin to do it

Need to be "opportunistic"

- Do the results agree?
- · Shouldn't need to ask the question

climateprediction.net

- Have created extremely powerful and distributed climate modelling facility by running model simulation on home computers (cf. SETI@home)
- Launch ensemble of coupled simulations of 1950-2000 and compare with observations.
- Run on to 2050 under a range of natural and anthropogenic forcing scenarios.
- Investigates sensitivity of climate system to increasing CO₂ with range of parameter values
- Have collaborated with other universities and industry to build system
- "Screensaver" requires
- 10 CPU days on a 1.4GHz P4 (min is 800MHz machine)
- >128MB memory
- 600MB disk space allocated to the programme

climateprediction.net results

- Already largest climate model ensemble ever (by factor of >200)
- >45,000 users, >15,000 complete model runs, >1,000,000 model years in ~3 months (this is equivalent to 1.5 Earth Simulators)

- Global outreach (participants in all 7 continents, inc. Antarctica!)
- Generated much interest in schools (coolkidsforacoolclimate.com)

LHC Analysis...

Experience of large collaborations (LEP, B-factories, Collider)

- · Only a small fraction of physicists know (in detail) how the data gets processed
- Even fewer care (except when it impacts their physics)

Physicists stand on each others shoulders

- "If I have seen further, it is by standing on the shoulders of giants." Isaac Newton
- "Mathematicians stand on each other's shoulders." Gauss
- "Mathematicians stand on each other's shoulders while computer scientists stand on each other's toes." Richard Hamming
- "It has been said that physicists stand on one another's shoulders. If this is the case, then programmers stand on one another's toes, and software engineers dig each other's graves." Unknown
- Gi'me all the events with high P_t J/ Ψ events, with a good D0, and 5 identified kaons (and I only want the good stuff) ...
- And I want it on my lap-top

The grid? What about the grid?

BaBar

Most analysis uses "ntuples" (rootuples)

- Analysis organised in physics process based groups
 - · Groups define the "tags" and composites produced
 - An "expert" produces the "ntuples" for the group
 - Group activity focused around the ntuple

Lots of reasons for the focus on ntuples

- Big reason analysing 1PB data is hard!
 - · Don't want to do it very often, leverage the work of each other
 - Book-keeping

Other experts defined the kaons and the pions

- Do everything <u>once</u>
- BaBar started off pretty well $(k/\mu/\pi/p...)$
- Slow to standardise/include composites
- No real attempt/manpower to develop integrated analysis

Big step forward is "merging" of "ntuples" and "dst"

CDF/D0

CDF

- Analysis in physics oriented groups
- Most analysis on pinned staged data on Central Analysis Facility
 - Distributed analysis means setting up new CAF's.
- Users write out their own samples/ntuple to "take home"
- High statistics analyses (e.g. B) already on analysis group ntuples

DO

- Commitment to distributed production computing Peter Maettig
 - · SAM
 - DST Reprocessing requires no database access
- Analysis based on DSTs + "Thumbnail"s (root files/trees?)
 - Disk resident but users don't know (SAM)
 - Confidence in contents from initial emphasis on "object-id"
- Organise groups around physics processes

What I want to do

Just before I leave for the airport

- Skim 200GB sHiggs sample to my laptop
 - Recipe -> tool(s) -> a button

On the (transatlantic) flight [or during the summary talk]

- · Try out that new idea
- (Complain that the satellite link [or wireless] isn't working)

When I get off the plane

- Refit tracks for my 10 selected events (needs some raw data)
- Join the analysis group access grid meeting and show plots
- Call up and display the full events for the gold plated CP violating sHiggs events I found (tool)
- Show I used the latest calibration and processing (tool)
- Add my sHiggs events to the "DST"

Book e-ticket to Stockholm

PP-\RC

Other Grid stuff

Access grid (+ desk top integration)

New developments

Fall into 2 types (not black and white)

- The "invisible" stuff
 - Users never need to know, it just happens
 - New network router, new standard c library, bigger tapes in the robot, new grid s/w
- The new opportunity stuff
 - "I know this looks harder (ie is different) but it will allow us to cross correlate everything when we write the tools"
 - Click on the histogram and see the calibration constants
 - Return all the raw data for my se
 - YOU NEED TO WRITE THE TOO
 - If the tools don't do the job, the
 - Someone will write "new" ones
 - NEED USERS + TRAINING

ARDA/Data Challenges Extremely important here - only 3 years to go

Grids for 2007

- Standard and coherent access
 - Transparent virtual data storage, resource access, single sign on...
- Analysis will only be really distributed if the tools exist
 - Calibrate the data, Track the data, Verify the data, use the data

Successful LHC Collaborations

Will

- Develop systems with one eye on the future
- Coordinate their data processing
- Not simply assume that it will sort itself out
- · Allow users to work where ever
- Facilitate lightweight "take home" event samples
- Keep track of calibration/processing/provenance
- Provide simple access to the power of the underlying computing system
- Plan for extensible analysis systems
- Get organised

Will not

- Ignore reality/priorities/human nature
- Stop users taking home event samples
- · Expect all collaborators to understand/care about the computing system
- Undervalue their computing (personnel) ©

Conclusion LHC Analysis in 2010

All Data processed in real time

- · Full detector calibration, track fitting and tagging
- · Events ressing standard enitoric also have NO N* D II reconstructed

PLUS

- The system is person-centric ("me"-centric)
- The things I need to do are easy to initiate
 - ·Defined by analysis group organisation
- ·I can synchronise my laptop anywhere at the press of a

Some tuples are HUGE (several 18)

Actually several copies stored over many different locations