

INFN Tier1

Andrea Chierici INFN – CNAF, Italy LCG Workshop CERN, March 23-24 2004

INFN - Tier1

- INFN computing facility for HNEP community
 - Location: INFN-CNAF, Bologna (Italy)
 - o One of the main nodes on GARR network
 - > Ending prototype phase last year, now fully operational
 - > Personnel: ~ 10 FTE's
 - ~ 3 FTE's dedicated to experiments
- Multi-experiment
 - > LHC experiments, Virgo, CDF, BABAR, AMS, MAGIC, ...
 - Resources dynamically assigned to experiments according to their needs
- Main (~50%) Italian resource for LCG
 - Coordination with Tier0 and other Tier1 (management, security, etc...)
 - Coordination with other Italian tiers
 - Participation to grid test-beds (EDG, EDT, GLUE)
 - > Participation to experiments data challenge
 - ROC + CIC in EGEE (deployment in progress)

Logistics

- Recently moved to a new location (last January)
 - > Hall in the basement (-2nd floor)
 - $> \sim 1000 \text{ m}^2 \text{ of total space}$
 - Computers
 - Electric Power System (UPS, MPU)
 - Air conditioning system
 - o Garr GPop
 - > Easily accessible with lorries from the road
 - Not suitable for office use (remote control)

Electric Power

- 380 V three-phase distributed to all racks
 - > rack power controls output 3 independent 220 V lines for computers
 - o 16 A or 32 A
 - > 3 APC power distribution modules (24 outlets each)
 - Completely programmable (allows gradual servers switching on)
 - Remotely manageable via web
- 380 V three-phase for other devices (tape libraries, air conditioning, etc...)
- Uninterruptible Power Supply (UPS)
 - Located into a separate room (conditioned and ventilated)
 - > 800 KVA (~ 640 KW)
- Electric Power Generator
 - > 1250 KVA (~ 1000 KW)
 - → up to 80-160 racks

Cooling & Air Conditioning

- RLS (Airwell) on the roof
 - > ~ 700 KW
 - > Water cooling
 - > Need "booster pump" (20 mts T1 $\leftarrow \rightarrow$ roof)
 - Noise insulation
- 1 Air Conditioning Unit (uses 20% of RLS refreshing power and controls humidity)
- 9 (→ 12) Local Cooling Systems (Hiross) in the computing room ~ 30 KW each

Networking (1)

- Network infrastructure using optical fibres (~ 20 Km)
 - > To insure a better electrical insulation on long distances
 - > To ease adoption of new (High Performances) transmission technologies
 - > To decrease the number of cables in and out from each rack
 - > Local links with UTP (copper) cables
- LAN has a "classical" star topology
 - GE core switch (Enterasys ER16)
 - Servers directly connected to GE switch (mainly fibre)
 - Disk servers connected via GE to core switch
 - Some servers concentrated with copper cables to a dedicated switch
 - > Farms up-link via GE trunk to core switch

Networking (2)

- WN's connected via FE to rack switch (1 switch per rack)
 - Not a single brand for switches (as for wn's)
 - 3 Extreme Summit 48 FE + 2 GE ports
 - o 3 3550 Cisco 48 FE + 2 GE ports
 - o 8 Enterasys 48 FE 2GE ports
 - > Homogeneous characteristics
 - 48 FastEthernet ports
 - Support of main standards (e.g. 802.1q)
 - 2 Gigabit up-links (optical fibers) to core switch
 - Moving to 1U 48 GE ports switches (10 Gbps ready)
 - Extreme Summit 400 (to be installed)
- CNAF interconnected to GARR-G backbone at 1 Gbps.
 - > Giga-PoP co-located
 - > GARR-G backbone at 2.5 Gbps
 - > 2 x 1 Gbps test links to CERN, Karlsruhe

L2 Configuration

- VLAN's defined across switches
 - Independent from switch brand (Standard 802.1q)
- Solution adopted for complete granularity
 - > Each switch port has one VLAN identifier associated
 - Each rack switch uplink propagates VLAN information
 - > VLAN identifiers are propagated across switches
 - > Each farm has its own VLAN
 - Avoid recabling (or physical moving) of machines to change farm topology
- Level 2 isolation of farms
- Possibility to define multi-tag ports (for servers)

Network layout

GARR Topology

Computing units

- ~ 320 1U rack-mountable Intel dual processor servers
 - > 800 MHz 2.4 GHz
 - > ~ 240 wn's (~ 480 CPU's) available for LCG
- 350 1U bi-processors Pentium IV 3.06 GHz to be shipped April 2004
- Testing Opteron farm
- OS: Linux RedHat 7.3
 - > Experiment specific library software
- Goal: have generic computing units experiments independent
 - > Taken LCG WN as a starting point
 - Experiment specific library software in standard places (e.g. /opt/exp_software/cms)
 - ➤ Simple storage mount points (e.g. /LHCb/01)

Installation issues

- Centralized installation system
 - ➤ LCFG (EDG WP4)
 - ➤ Integration with a central Tier1 db (see below)
 - > Each farm on a distinct VLAN
 - Moving from a farm to another implies just changes in IP address (not name)
 - Unique dhcp server for all VLAN's
 - Support for DDNS (cr.cnaf.infn.it)
- Investigating Quattor for future needs

Tier1 Database

- Resource database and management interface
 - > Hw servers characteristics
 - Sw servers configuration
 - Servers allocation
 - Postgres database as back end
 - Web interface (apache+mod_ssl+php)
- Possible direct access to db for some applications
 - Monitoring system
 - Nagios
- Interface to configure switches and interoperate with installation system
 - Vlan tags
 - > dns
 - > dhcp

Batch system

- torque+maui (http://www.supercluster.org)
 - > 50% of resources statically assigned to experiments (1 VO = 1 queue)
 - > 50% of resources in "overflow" queue shared among experiments
 - Still looking for the "ultimate configuration" to maximize CPU utilization and to simply management
- Problems with single LCG gatekeeper
 - Publishing feed queue (1 CE) fails to report correct information in IS
 - Now several queues announced
 - LCFGng does not support this configuration

Monitoring/Alarms

- Monitoring system developed at CNAF
 - > Centralized collector
 - >~100 variables collected every 5 minutes
 - Data archived on flat file
 - In progress: XML structure for data archives
 - User interface: http://tier1.cnaf.infn.it/monitor/
 - Next release: JAVA interface (collaboration with D. Galli, LHCb)
- Critical parameters periodically checked by *nagios*
 - Connectivity (i.e. ping), system load, bandwidth use, ssh daemon, pbs, etc...
 - User interface: http://tier1.cnaf.infn.it/nagios/
 - > In progress: configuration interface

Remote console control

- Paragon UTM8 (Raritan)
 - > 8 Analog (UTP/Fiber) output connections
 - Supports up to 32 daisy chains of 40 nodes (UKVMSPD modules needed)
 - Costs: 6 KEuro + 125 Euro/server (UKVMSPD module)
 - > IP-reach (expansion to support IP transport) evaluted but not used
- Autoview 2000R (Avocent)
 - > 1 Analog + 2 Digital (IP transport) output connections
 - > Supports connections up to 16 nodes
 - Optional expansion to 16x8 nodes
 - Compatible with Paragon ("gateway" to IP)
- Evaluating Cyclades Alterpath KVM via serial line: cheaper
- APC Network Power Controls: allows remote and scheduled power cycling via snmp calls or web
 - > Remote control via IP up to 24 outlets/module

Raritan

Avocent

Storage (1)

- Access to on-line data: DAS, NAS, SAN
 - > 50 TB
 - > Data served via NFS v3
- Several hw technologies used (EIDE, SCSI, FC)
- Ongoing study of large file system solutions (>2TB) and load balancing/failover architectures
 - GPFS (load balancing, large file systems)
 - Not that easy to install and configure!
- High Availability for NFS servers
 - RedHat AS 2.1 (Redhat AS 3.0 soon)
 - Tested and ready for production

Storage (2)

- "SAN on WAN" tests (collaboration with CASPUR)
 - > Iscsi
 - > FC over IP on WAN
 - > Peak throughput: 100 MB/s (RAID 0)
- Tests with PVFS (LHCb, Alice)
 - > Easy to configure and install
 - Not yet production quality software
- SAN as architectural choice
 - ➤ Currently ~ 30 TB available
 - ➤ Soon ~ 200 TB more

DISK resources at TIER1

DISK resources at TIER1 (2)

Assembled NAS 4 IDE disk 3ware interface 2 Gigabit Ethernet Interface

TOT: 2.5TByte (raw)

2 TCP/IP Gigabit Ethernet 1Gb/s Optical

AXUS BROWIE 2 Fibre Channel interface

TOT: 2.5 TByte (raw) Copper

Fibre Channel

2 Gbit/s

STK BLADESTORE 4 Fibre Channel interface TOT: 12TByte (raw) Fibre Channel optical 2 Gbit/s

-1 LINUX DELL 1550 server

-LSI LOGIC Fibre Channel

Copper Adapter

-Gigabit Ehernet Adapter Optical

STORAGE resource

CASTOR resource at TIER1 (1)

- 1 COMPAQ DL360 Redhat 7.2 Machine (castor) running CASTOR 1.6.1.3 services + ORACLE database (Nsdaemon, vmgrdaemon, Cupvdaemon, vdqmdaemon, Cdbdaemon, msgdaemon, stgdaemon, tpdaemon, rtcpd, rfiod, ctpdaemon) with SCSI connection with 2 LTO-1 drive on STK L180
- DELL 1650 RedHat 7.2 Machine (castor-1) running 2 CASTOR services (rtcpd, tpdaemon) + ORACLE Recovery Manager Database (needed for LEGATO backup of the db) with SCSI connection with 2 LTO-1 drive on STK L180
- Both Machines run the STK CDC Dev. Toolkit (ssi)

CASTOR resource at TIER1 (2)

- 1 SUN SPARC ULTRA 10 SOL.v8 running <u>ACSLS 6.0</u> (with ext. SCSI disk)
- 1 RAIDTEC HI 160 SCSI 2Tbyte RAID5 array disk
- 4 SCSI LTO-1 IBM DRIVE with 100 Maxell LTO tapes (+ 50) on the STK L180
- The "old" Castor installation is built on a central machine used also as a disk server (with stager) and as a tape server
 - > A different machine used as another tape server

CASTOR resource at TIER1 (3)

- STK L5500 robot with 2000 active slots (out of 5000) and 6 LTO-2 FC Drives
- 1300 LTO-2 (Imation) Tapes
- Sun Blade v100 with 2 internal ide disks with software raid-0 running ACSLS 7.0
- Point to point F.C. connection to 6 F.C. HBA on 3 dedicated machines (tape servers)

CASTOR resources

Summary & conclusions (1)

- INFN-TIER1 ended prototype phase
 - > But still testing new technological solutions
- Moved resources to the final location
- Several things still to fix
- Starting integration with LCG
 - CNAF Tier1 is an LCG2 Core site (Jan 2004)
 - Supporting italian Tier2 (Catania, Legnaro, Roma, Milano)
- Wish to collaborate more with CERN and other Tiers to improve
 - > CASTOR
 - > RLS
 - > Farm utilization

Summary & conclusions (2)

- Participating to Data Challenges
 - > ~ 240 computing servers (~ 480 CPU's)
- CMS DC04
 - > ~ 70 computing nodes allocated
 - > ~ 4M events (40% of Italian commitment) 15+60 (Tier0) TB of data (July to December 03)
 - > Analysis of simulated events (January to February 04)
 - Interoperation with Tier0 (CERN) and Tier2 (LNL)