

Review of problems seen in LCG-2: Minimum site requirements

Ian Bird

GDB 13th July 2004

Overview

Review of issues in LCG-2 data challenges

- From operations point of view
- From experiments' point of view
- Appropriate levels of resources
 - Summary of experiments' needs
 - Request for resource levels to be made available

Operations issues – 1

- Site missing from BDII (6-8 sites)
 - Site GIIS down or provides wrong information
 - Known MDS problem replace GIIS with BDII
- Job submission problems
 - PBS issue usually
 - Non-shared filesystem wrong config of ssh keys
 - Shared filesystem NFS issue (clock sync)?
 - Usually only a few nodes at a site with problem → BUT becomes a "black-hole"
- Replication problems
 - Site SE missing from info system GRIS dies (MDS: use BDII)
 - Network/firewall problems
 - Wrong firewall config, or gridftp problem with multiple streams
 - (wrong BDII configured in RM no longer an issue?)

Operations issues – 2

- Lack of operational tools to understand problems
 - Missing in middleware: interfaces for system management
- No accounting
 - We really need this urgently
- > No statistics on usage/failures, etc.
 - Need to develop these tools
 - Need a much better top-down view of status and simple way to trace problems
- Many sites want to move away from OpenPBS
 - Bugs, want better scheduling
- Need better upgrade process
 - Hard to upgrade during production

Compute Element – Batch systems

- Batch systems vs GLUE (or any fixed schema) vs CE vs RB
 - Batch systems like LSF very rich set of functionalities/sharing etc
 - Does not easily map to a (finite size) fixed schema
 - RB needs to be able to make use of published information
- Can't assume homogenous clusters
 - Globus model assumes homogenous clusters very few are
 - Need separate CEs for each sub-cluster
- Can't see per VO free slots/ jobs running
 - Need separate CEs per VO
 - Need VOMS to really map to correct VO
 - BUT LSF/PBS cannot easily provide this in a shared farm (scheduling too complex)
- Missing (consistent) normalisation of CPU specs and queue lengths
 - We have published instructions on what sites must do
 - Has to be followed through

Resource Broker

- Use of ranking algorithms
 - Complex behaviour, not necessarily what is expected
 - But seems to behave correctly
- No bulk operations for submission/status
 - Missing functionality really needed for big batch productions
- Speed of submission (1s response, 15s submission)
 - But does not die/choke/fail
 - Much faster now since can use BDII for ranking
- + bugs found and fixed
 - Expiring and shared proxies
 - File descriptor leak in C++ API
 - Connection dropped re-started all jobs
 - Pointer to initial working directory

POOL/RLS Experience (Dirk Düllmann 31/3 GDA meeting)

CMS Data Challenge showed clear problems wrt to the use of RLS

- Partially due to the normal "learning curve" on all sides in using a new systems
- Some reasons are
 - Not yet fully optimised service
 - Inefficient use of language bindings and query facilities
- POOL and RLS service people works closely with production teams to understand their issues
 - Which queries are needed?
 - How to structure the meta data?
 - Which catalog interface?
 - Which indices?

POOL/RLS Experience (Dirk Düllmann 31/3 GDA meeting)

- But poor performance also due to known RLS design problems!
- File names and related meta data are used in one query
 - RLS split of mapping data from file meta data (LRC vs. RMC) results in rather poor performance for combined queries
 - Forces the applications (eg POOL) to perform large joins on the client side rather than fully exploit the database backend
- Many catalog operations are bulk operations
 - Current RLS interface is very low level and results in large overheads on bulk operations (too many network round-trips)
- Transaction support would greatly simplify the deployment
 - A partially successful bulk insert/update requires recovery "by hand"
- These are not really special requirements imposed by POOL
 - Still acceptable performance and scalability needs a catalog design which keeps the data which is used in one query close to each other
 - Try to work around some of this know issues on the POOL side
- > ...and...Java clients \rightarrow clients based on C++ API

General issues

- Jobs "cancelled"/aborted for unknown reasons
 - see site configuration issues, and RB bugs fixed
- Lack of tools and information about failed jobs
 - Needed to involve site managers
 - GridIce monitoring is opaque
 - Tools are missing
- Lack of consistent storage grid interfaces
 - Hidden by RM, but ...
- Lack of disk space on SEs
 - → see resource requirements
- Unreliable data transport layer
 - Gridftp not robust
 - → Need reliable data transfer service
- Large number and small size of files
 - Problem will only get worse needs layer between tape and apps

Summary of resource needs

	ALICE	ATLAS	CMS	LHCb
SE GB/cpu	30	30-40	50	?
WN Disk GB/job	2.5	2.5	1	5
WN memory MB/job	600	600 (1GB for pileup at selected sites)	500	500
Longest job (@ ~2 GHz)	8h	24h	72h(exceptionally 1 week for Oscar?)	24h
SW installation space (GB)	0.5 GB in shared area	15GB	0.7 GB (prod) 20GB (analysis) in shared area	0.5 GB production 3 GB analysis

Comments

- ➢ SE GB/cpu:
 - Space needed on the local storage element in GB per cpu in the cluster. All experiments need similar amounts.
 - A comfortable limit would be between 1.5 and 2.5 TB per 50 CPU per experiment supported.
- > WN disk GB/job:
 - Space needed on each worker node in GB for each simultaneous job. This is scratch space that should be available to each job.
 - With recent systems with large disks this should really be no issue.
- > WN memory MB/job: RAM needed for each job.
 - To avoid swapping cluster nodes must have this amount of RAM available for each simultaneous job running on a machine, and sufficient swap space to go with it.
 - If the RAM is not available then the number of jobs that can be run on a machine should be limited appropriately.
- > Longest job:
 - Length of the longest jobs measured in hours on a 2 GHz cpu.
 - Batch queues need to support jobs of this length *scaled by the site's slowest cpu*.
 - Thus, queues need to be able to support week-long jobs.
- SW installation space:
 - How much space in GB each experiment needs for its software installation.
 - This includes the installation of multiple software versions.
 - Usually shared filesystems

Requirements – for site to contribute to experiments' DC/production

- Storage element space: 30-50 GB per cpu
- Worker node disk: 5 GB per concurrent job
- Worker node RAM: at least 500 MB per concurrent job
 - More for ALICE and some ATLAS needs
- Batch queue lengths: > 72h @ 2 GHz equivalent
- Experiment software installation: 20 GB per experiment
- It is essential to ensure these resources are available urgently
 - Less will limit the usefulness of the site for LCG DC's and production
 - Experiments are likely to use only sites with sufficient resources
- Also ensure that information is advertised correctly
 - Respond to change requests ops team is asking for

Summary

- Need to (urgently) put resources in place
 - Cpu vs SE disk; scratch space; WN memory, queue lengths
- Storage issues:
 - Consistent interfaces, missing managed storage on SE
 - Large number of small files vs long jobs
- Unreliable data transfer
- RLS/file catalogues
- Lack of tools for
 - Operations support
 - Application debugging
- Model of RB/CE vs Batch systems, heterogeneous clusters
- Many bugs found and addressed