
Publication of network monitoring data in the European

DataGrid

Paul Mealor (pdm@hep.ucl.ac.uk)
University College London, Gower Street, London WC1E 6BT, United Kingdom

Robert Harakaly (robert.harakaly@ens-lyon.fr)
ENS Lyon, 46, Alle d’Italie, 69364 LYON Cedex 07, France

Franck Bonnassieux
Formerly of: ENS Lyon, 46, Alle d’Italie, 69364 LYON Cedex 07, France

Peter Clarke (clarke@hep.ucl.ac.uk)
University College London, Gower Street, London WC1E 6BT, United Kingdom

Abstract. Efficient allocation of computing, storage and network resources in a
Grid environment where large volumes of data need to be moved about requires
good knowledge of the state of the networks involved. Comprehensive and accessible
information about the current and historical state of networks allows easier diagnosis
of network problems. The European DataGrid Network Monitoring Architecture
includes monitoring points running new and existing network monitoring software
modified to publish monitored information using the Relational Grid Monitoring
Architecture (R-GMA); the Probes Coordination Protocol that provides distributed
scheduling of network measurements; software to publish the logged information
from file transfer tools such as GridFTP into R-GMA; and tools to archive the
published information for later use.

Keywords: European DataGrid, network monitoring, monitoring information pub-
lication

Abbreviations: EDG – European DataGrid; R-GMA – Relational Grid Mon-
itoring Architecture; API – Application Programming Interface; PCP – Probes
Coordination Protocol; NCES – Network Cost Estimation Service

1. Introduction

Information about the state of networks has many uses in a Grid, and
all the more so in a Data Grid where large volumes of data are moved
around and processed. In such an environment, there are two main areas
where there state of the networks is particularly useful: for resource
selection and for trouble-shooting.

Information on the state of the networks must therefore be available
to Grid middleware, users, applications and adminstrators.

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 29/03/2004; 16:06; p.1



2

1.1. Resource selection in the Grid

In the European DataGrid environment, the major resources available
to Grid jobs are storage and computation. Experimental data and data
generated in simulation jobs can be stored at the storage resources.
These files may then be replicated across the Grid to be available for
further analysis by other jobs and users. Thus, a single logical file may
exist as several replicas on the Grid.

1.1.1. Replica selection
The selection of a particular replica of a logical file for use by a com-
putational job and for further replica generation is very important. In
EDG, otherwise identical replicas are selected by the “cost” of retriev-
ing them. The cost could be based on many factors, but in EDG, it is
based primarily on the time until the file can be used; this cost may be
dominated by the time taken to transfer the file over the Internet.

1.1.2. Job distribution
Orthogonally, the selection of computational resources for a grid job
may be based on the availability of data replicas.

Grid Jobs may consume or generate very large files. Users may
specify the storage system at which to store large output files, and
large input files must be retrieved from other storage systems. In this
case, the resource brokering system can use the cost associated with
storing or retrieving these files to decide on the optimum computational
resources on which the job should be run.

1.2. Network trouble-shooting

Network trouble-shooting requires long-term monitoring of the state of
networks. Comprehensive information allows identification of long- and
short-term trends to flag problems before they occur. Sudden changes
can be associated with configuration changes, even after the fact with
historical data.

2. EDG network monitoring architecture

The network monitoring publication scheme consists of extensions of
existing software and new software distribute measured network in-
formation via Grid information services. The main tools making mea-
surements of network performance are three similar active monitoring
tools: PingER[11], IperfER and UDPMon, described in more detail in

paper.tex; 29/03/2004; 16:06; p.2



3

§2.1; the GridFTP[1] system used to transfer data in a secure and Grid-
aware fashion is also used as a source of passively measured performance
information, this is described in §2.6.

2.1. Monitoring tools

The monitoring tools used within the European-DataGrid were mostly
adapted from other work. A brief overview of the tools is given here:

PingER, IperfER and UDPMon are monitoring tools used in EDG,
and are based upon PingER[11], originally developed by the Internet
End-to-End Performance Monitoring project (IEPM) at SLAC.

2.2. PingER

PingER is based on a number of scripts run at set intervals by cron,
and a number of CGI scripts which provide a web interface.

The cron scripts are run at regular intervals, performing a number
of multi-packet pings of all machines listed in a configuration file. Each
group of pings can be performed with different packet sizes. Ping mea-
sures round-trip latency and packet loss with ICMP ECHO packets.
The measurements are stored in text files on the measuring machine.

Data measured by PingER is presented to users via a web interface.
From this interface, the most recent measurements can be displayed, as
well as graphs of historical information. Raw data may also be extracted
in a more machine-readable format for use by automated tools.

Because the IEPM PingER software requires manual configuration,
measurements to new sites take time and manpower. Conflicting tests
(which are especially pertinent to Iperf and UDPMon test) can only
be avoided with careful planning. Also, there is no standard method of
discovering pre-existing measurements.

A number of changes were made to the basic PingER system for
its use in EDG: Initially, the lists of hosts to measure was downloaded
from a central repository to try to avoid simultaneous measurements
(this was more useful for IperfER and UDPMon) and to allow new
measurement targets to be added to the entire system easily. This sys-
tem was eventually substituted for the Probes Coordination Protocol,
which provides better guarantees that simultaneous measurements will
not occur.

PingER was also adapted to allow it to publish measurements into
R-GMA via edg-netmon2rgma; this is explained more fully in §3.

paper.tex; 29/03/2004; 16:06; p.3



4

2.3. IperfER

IperfER is a conversion of the PingER tool that makes use of Iperf[7]
to make regular TCP throughput tests. As they are based upon the
same codebase, both IperfER and PingER have similar functionality:
graphical and data display, PCP integration and the ability to push
measurements into R-GMA.

2.4. UDPMon

UDPMon refers to two pieces of software: a custom built measurement
tool and another monitoring infrastructure based on PingER[10].

The measurement tool sends UDP packets to a target server at
regular intervals. The server can calculate achievable UDP throughput,
packet loss, and inter-packet delay variation (jitter), and the results are
returned to the client.

The UDPMon monitoring infrastructure used in the European Data-
Grid has the same functionality as PingER: graphical and data display,
PCP integration and the ability to push measurements into R-GMA.

2.5. Probes Coordination Protocol

The Probes Coordination Protocol (PCP) is a flexible group communi-
cation protocol specially designed for Grid network monitoring services.
This protocol was developed within Work Package 7 of the European
DataGrid project. The PCP control topology is based on a named ring
that is traversed by a token. PCP integrates different concepts that
have been proposed in a heterogeneous context involving networking,
distributed algorithms and Grid security in a simple and open tool.

PCP enables the definition of a set of logical sensor groups (cliques)
and also the interaction between the cliques. Scalability issues can
be easily solved by creating a hierarchical structure of measurements;
the basic requirement of mutual exclusivity between measurements is
always satisfied as measurements are only allowed when the token is
present. PCP also implements security mechanisms as well as many
other features. A detailed description of the Probes Coordination Pro-
tocol can be found in [9]. The generalised version of PCP called Grid
Coordination Protocol can also be used for configuration coordination
and other distributed actions, and is detailed in [8].

The main principles of the protocol are as follows: clique members
have a position on the ring, and each member can receive the token or
pass it on. For simplicity, we define the ring as an ordered list of site
agents like

Ring = [S0, S1, S2...Sn−1, S0]

paper.tex; 29/03/2004; 16:06; p.4



5

The token definition contains the specification of the ring and the action
(f) that will be actived on receipt of the token by each site agent. A
list of arguments can be added to the action

Argl = [Arg1, Arg2, ..., Argn]

The token is defined with required and option temporal parameters
such as a periodicity, and timeout and the authorised delay deviation.

When the token has been generated and initialised with its argu-
ments, it is sent to the first member agent. When the token is received
by a member, it is registered locally, the action is performed and the
current time is saved. Then the token is transmitted to the next member
node.

PCP is robust: if a token is lost, the next agent in the ring will time
out and a new token is generated; duplicated tokens are discarded.

PCP is used for the scheduling of all network monitoring actions in
the European DataGrid application testbed.

2.6. GridFTP

GridFTP[1] is an extension of FTP to allow various Grid-specific func-
tions, such as Grid security, plus multi-stream and striped transfers.
The implementation of the GridFTP daemon used in EDG was adapted
from NCFTP. The adapted GridFTP daemon logs in two formats: a
general text format and a NetLogger[12] format; the latter consists of
key/value pairs separated by an equals sign (=), and provides more
information than the former. A new log entry is added once every
transfer to or from the daemon is complete.

3. Publication and archiving

Publication of network monitoring information in EDG is accomplished
using the R-GMA system[2]. The R-GMA architecture is shown in
Figure 1, along with network monitoring-specific components, which
are explained below. R-GMA components are shaded. Clients publish
information via an the Producer API. The Producer API and asso-
ciated Producer servlets deal with advertising the producer through
the distributed Registry, and the servlets deal with connections from
Consumers.

To query R-GMA, a client uses the Consumer API. The API hides
the complexity of fulfilling the query from the client, by presenting rela-
tional database-like tuples to the client. The Consumer servlet actually
queries the Mediator to evaluate which Producers are generating data

paper.tex; 29/03/2004; 16:06; p.5



6

needed to fulfill the client’s query. The Consumer servlet can then set
up connections to each of the Producers to retrieve the data from them.
Data can either be streamed from the Producers as it is updated (a push
model), or requested with once-off queries (a pull model), depending on
the type of Producers used. Streaming Producers store a short history
of tuples in a buffer, to try to ensure that no information is lost when
lots of new tuples are added in a short time.

The Mediator makes use of predicate information generated by the
Producers. These predicates indicate limits on what data the Producer
can and will produce. They are expressed as SQL WHERE clauses.

3.1. Publication from active tools

Producers need to be fairly persistent, so that data can be retrieved at
any time by Consumers; however, the three active measurement tools
are based on short scripts run at regular intervals (§2.1), and exit after
all measurements in a batch have been made. There is no way to extend
the lifetime of the Producers beyond the lifetime of the containing
scripts. To circumvent this problem, a daemon program was created
that would handle all of the producers required for a particular host.
The daemon, edg-netmon2rgma, maintains connections to the servlets
while the scripts are not running, ensuring that the connections do not
time out by setting their expiry times beyond the time at which the next
measurement is expected to be made. The layout is shown in Figure 1.
Solid lines indicate the path of measurement data; dashed lines indicate
the path of meta-data and queries. The components in the top left
part of the diagram run on the network monitoring machine while the
associated servlets (centre) may run on on any nearby machine. The
bottom left box contains the archiving system. Registry and Mediator
components hidden from the user are shown on the bottom right. The
top right represents more Producers and associated servlets.

edg-netmon2rgma creates a Unix named pipe (or FIFO, for first-
in first-out) that is used by the measurements scripts to contact the
daemon. The scripts can send commands to the daemon; each command
consists of a command name, plus any number of parameters separated
by spaces.

Each measurement script, for PingER, IperfER and UDPMon, was
modified to contact edg-netmon2rgma with each batch of measure-
ments, to declare the information it will produce, and then again after
each measurement at the same time as data is stored in the tool’s
internal database.

In the declaration phase, the tools send an “addmetric” command
to edg-netmon2rgma. This command has a number of parameters: the

paper.tex; 29/03/2004; 16:06; p.6



7

servlet

MySQL
database

producer API
producer

archiver API servlet

archiver 
servlet

consumer

database
producer
servlet

registry and
mediator

registerdata

query/register/
reply

FIFOtimeping script
PingER netmon2rgmad

Figure 1. edg-netmon2rgma and associated components in the EDG monitoring
architecture. The client in this case is an archiver. Solid lines indicate the path of
measurement data; dashed lines indicate the path of meta-data and queries; shaded
boxes are R-GMA components.

name of the tool, the metric being declared, an estimate of the number
of measurements to be made at each go, and a list of fixed values that
this tool will always produce. The combination of tool and metric is
used to identify the tool in later communications. The list of fixed
values is validated in a similar way to new results, see below. The fixed
rules are used to generate the predicate which will be advertised by a
Producer. Each edg-netmon2rgma daemon can support any number of
Producers simultaneously, and so any number of measurement tools can
rely on on daemon. A new Producer is created whenever a) the daemon
has no Producer that produces the required table (or tables), b) the
daemon has no Producer that matches the predicate for the data from
the tool. Even if no new Producer need be made, the daemon ensures
that the Producer buffer size is large enough to hold every measurement
expected each time that tool’s scripts are run.

As each script runs, it sends the results of each measurement to
edg-netmon2rgma. Each measurement is sent in a “measurement” com-
mand. With each measurement result, the identifying tool and metric

paper.tex; 29/03/2004; 16:06; p.7



8

are transferred, as well as name/value pairs indicating the source and
destination of the measurement, the parameters used in the measure-
ment, and the result. The tool and metric are used to pick a Producer
and are used to validate the name/value pairs. The name/value pairs
are validated against general rules of the validity of these declarations,
and rules specific to the metric being declared, in particular the valid
names available, and the values they are allowed. IP address values are
also converted to DNS hostnames.

Each script may send multiple measurements to edg-netmon2rgma
each time it makes a measurement if more than one metric is measured.
For example, a simple ping by PingER measures both round-trip time
and packet loss.

3.2. Archiving

The Producers used by edg-netmon2rgma store a very short history.
This history is maintained so that Consumers may always retrieve
all information from the Producer, even if the Producer is updated
more quickly than the Consumer can retrieve each update. However,
historical data is useful for various purposes: network trouble-shooting
(see §1.2) is a good example. The calculation of uncertainty on mea-
surements and the calculation of predictions might also be useful uses of
historical data, although these were not implemented in EDG. Histori-
cal data is stored in an archiving system. R-GMA provides an archiving
system, where a streaming Consumer constantly evaluates a query. New
tuples created by any Producer that match the Consumer’s query are
stored in a database for later retrieval. The tuples are then republished
by a (non-streaming) Producer.

The network monitoring archiving system is designed to be dis-
tributable: the queries on each Archiver may be set so that only a subset
of all possible network information is stored there. The R-GMA Produc-
ers themselves advertise a predicate indicating the content of the data
they produce, so that the Mediator can calculate which Producers are
required to fulfill a particular query. In this fashion, multiple Archivers
may be configured to store different information for load-balancing
purposes.

3.3. Publication from GridFTP

GridFTP statistics publication is handled differently from publication
for active tools. The GridFTP server application generates a log file in
NetLogger format containing information about each file transfer made
to or from the server. The log file contains: the two hosts involved in
the transfer, the direction of the transfer, the TCP buffer size, the

paper.tex; 29/03/2004; 16:06; p.8



9

servlet

MySQL
database

producer API
producer

archiver API servlet

archiver 
servlet

consumer

database
producer
servlet

registry and
mediator

registerdata

query/register/
reply

ftlog2rgmadGridFTP daemon
(gsiwuftpd) Log

Figure 2. ftlog2rgma and associated components in the EDG Network Monitoring
Architecture.

number of bytes transferred, the number of parallel TCP streams used
to make the transfer and the number of stripes used. Each log entry
also contains a start and end timestamp for the transfer, plus the name
of the file transferred (which is ignored).

The GridFTP publication architecture is shown in Figure 2. A sep-
arate daemon, ftlog2rgma, periodically checks the log file for changes:
if the logfile is extended (that is, the file size increased since the last
check), ftlog2rgma assumes that new entries have been appended, and
attempts to publish those entries into R-GMA; if the logfile is reduced
in length, ftlog2rgma assumes that the log has been emptied by, perhaps
by a utility such as logrotate, and so any entries in it are counted as
new and therefore are published into R-GMA. Because it is a persistent
daemon, ftlog2rgma can maintain the Producers it uses.

3.3.0.1. Linking information In order to be useful to Grid middle-
ware, network performance information must be associated with Grid
components other than the network monitoring machines. Two further
tables of data are published by netmon-info daemons.

paper.tex; 29/03/2004; 16:06; p.9



10

4. Publication schema

The publication schema is split into two types: measurement informa-
tion and linking information.

Each measurement information table contains a value of a single
metric, plus information about the measurement such as the source and
destination hosts and the tool and protocol parameters used when mak-
ing the test. For round trip time (as measured by ping), the maximum,
minimum and mean of a small number of measurements is published
rather than a single value.

Protocol parameters depend upon the metric and protocol:

TCP throughput The TCP buffer size used, the number of par-
allel streams, the duration of the transfer. Iperf measures TCP
throughput.

ICMP packet loss The size of packets sent including the ICMP and
IP headers. This is measured by Ping.

ICMP round trip time The size of packets sent. This includes the
ICMP and IP headers. This is measured by Ping.

UDP throughput The packet size, the number of packets and the
gap between each packet sent. This is measured by UDPMon.

UDP loss The packet size, the number of packets and the gap between
each packet sent. This is measured by UDPMon.

UDP inter-packet delay variation The packet size, the number of
packets and the gap between each packet sent. This is measured
by UDPMon.

File transfer achieved throughput The filesize, the TCP buffer size
and the number of parallel streams. GridFTP reports this.

Every tables also includes the time at which the measurement was
finished, and the tool used to make the measurement.

File transfers can be made to or from the transfer protocol server,
so neither the source or destination on a single Producerare fixed:
this makes it impossible to create a predicate to aid the Mediator,
create a selective archiver or for trouble-shooting information for an
administrator. Therefore file transfer table also includes the hostname
which hosts the GridFTP daemon. This field is always the same for a
given server, so a more precise predicate can be generated.

There are two linking tables: one that links Storage Element identi-
fiers to measurement machines, and one that links Computing Element

paper.tex; 29/03/2004; 16:06; p.10



11

LDAP/MDSLDAP/MDSLDAP/MDSLDAP/MDSLDAP/MDSLDAP/MDSLDAP/MDSLDAP/MDS

R-GMA

LDAP

SQL

HTTP GET

XML/SOAP

Cost model I Cost model II

F
o
r
e
c
a
s
t
i
n
g

e
n
g
i
n
e

OGSA
interface

Data

Cost

Service

XML/SOAP

Native
JAVA API

Figure 3. Modular architecture of network cost suite. Data storage plugins (left side)
for communication with different data storages.

identifiers to measurement machines. These tables simply consist of
pairs of Computing or Storage Element identifier and the name of a
measurement machine.

5. Uses of network information: Network cost estimation
service

The Network Cost Estimation Service [6] (NCES) was developed and
deployed within the European DataGrid project to enable efficient
estimation of network quality for network-based optimisation. NCES
provides an estimation of the network quality for a given network com-
munication. Quality is expressed as a cost, which might be any abstract
measure of network quality. Due to the wide variety of different network
communication types, different measures of quality must be used.

NCES is also designed to solve interoperability problems. A set of
input service plugins enables access to any source of monitoring data,
such as LDAP, MySQL or R-GMA. The service also publishes through
different interfaces, such as via a Web Service or an OGSA compatible
interface. Finally, a Java interface library is available that hides network
communication from the application. Thanks to this design feature, the
NCES can interoperate with storage and services based upon different
standards. These features are illustrated in Figure 3.

5.0.1. Use of the Network Cost Estimation Service
Both resource brokering and replica selection in the EDG using NCES
may be shown by a simple example.

paper.tex; 29/03/2004; 16:06; p.11



12

A user wishes to submit a job j that requires a logical file F , which
exists as replicas f1, f2, f3 at storage elements S1, S2, S3, respectively.
The job may be run at one of two computing elements C1 or C2.
The user submits the job to a resource broker. The resource broker
discovers the locations of the replicas, and calculates the total cost for
each combination of computing and storage element as c11, c12 . . . c23

as the sum of the network cost for the transfer of a file from the storage
element to the computing element and any other costs associated with
the transfer of the file and the cost of doing the computation at that
computing element.

The network cost for each pair could be estimated from file transfer
information if it is available. With other instrumented applications or
middleware, costs for different cost models could also be calculated. If
no passively collected information is available, the network cost for each
pair is calculated by first querying the linking tables to find the network
monitoring nodes associated with the computing and storage elements.
An estimate of the network cost between the storage element and the
computing element can then be calculated from actively measured data
between the two network monitoring nodes.

The resource broker chooses the computing element with the lowest
total cost, and queues the job there[3].

When the job actually starts, it searches for the nearest replica in
order to start using it using the getBestReplica function[4]. It compiles
a list of costs for each storage element at which the replica resides
c1, c2, c3. Conceivably this could be a different set of storage elements
if conditions have changed since the job was queued. The job then
retrieves the best replica.

Acknowledgements

None of this work would have been possible without R-GMA, which was
written by the members of Work Package 3 of the European-DataGrid.
Their guidance and support has been invaluable.

References

1. Allcock, W., J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and
S. Tuecke, ‘GridFTP: Protocol Extensions to FTP for the Grid’.
http://www.globus.org/datagrid/gridftp.html. Internal draft.

2. Cooke, A., W. Nutt, J. Magowan, P. Taylor, R. Byrom, L. Field, S. Hicks,
et al.: 2003, ‘R-GMA: A Relational Grid Information and Monitoring System’.
In: Proceedings of the 2nd Cracow Grid Workshop.

paper.tex; 29/03/2004; 16:06; p.12



13

3. EU-DataGrid Work Package 1: 2004, ‘Work Package 1 Final Evaluation
Report’. CERN EDMS Id: 414780.

4. EU-DataGrid Work Package 2: 2004, ‘Work Package 2 Final Evaluation
Report’. CERN EDMS Id: 406379.

5. EU DataGrid Work Package 7, ‘WP7 Network Metrics Archive Browser’.
http://ccwp7.in2p3.fr/wp7archive/.

6. EU-DataGrid Work Package 7: 2004, ‘Final report on network and infrastruc-
ture and services’. CERN EDMS Id: 414132.

7. Gates, M., A. Tirumala, J. Ferguson, J. Dugan, F. Qin, and K. Gibbs, ‘Iperf’.
http://dast.nlanr.net/Projects/Iperf/.

8. Harakaly, R., P. Primet, and F. Bonnassieux: 2004, ‘Grid Coordination by
Using the Grid Coordination Protocol’. To be published in: proceedings of the
4th IEEE/ACM International Symposium on Cluster Computing and the Grid.

9. Harakaly, R., P. Primet, F. Bonnassieux, and B. Gaidioz: 2002, ‘Probes Coor-
dination Protocol for Network Performance Measurement in GRID Computing
Environment’. In: proceedings of ISPDC, Iasi, Romania. pp. 278–286.

10. Hughes-Jones, R., ‘UDPMon’. http://www.hep.man.ac.uk/u/rich/net/.
11. Matthews, W. and L. Cottrel, ‘PingER’. http://www-

iepm.slac.stanford.edu/pinger/.
12. Tierney, B. and D. Gunter, ‘NetLogger: A Toolkit for Distributed System

Performance Tuning and Debugging’. LBNL Tech Report LBNL-51276.

paper.tex; 29/03/2004; 16:06; p.13



paper.tex; 29/03/2004; 16:06; p.14


