
The Relational Grid Monitoring Architecture:

Mediating Information about the Grid

Andy Cooke, Alasdair Gray and Werner Nutt
Heriot-Watt University, Edinburgh, UK

James Magowan, Manfred Oevers and Paul Taylor
IBM-UK

Roney Cordenonsi
Queen Mary, University of London, UK

Rob Byrom, Linda Cornwall, Abdeslem Djaoui, Laurence Field∗,
Steve Fisher, Steve Hicks, Jason Leake†, Robin Middleton, Antony
Wilson and Xiaomei Zhu
Rutherford Appleton Laboratory, UK

Norbert Podhorszki
SZTAKI, Hungary

Brian Coghlan, Stuart Kenny, David O’Callaghan and John Ryan
Trinity College, Dublin, Ireland

April 1, 2004

Abstract. We have developed and implemented the Relational Grid Monitor-
ing Architecture (R-GMA) as part of the DataGrid project, to provide a flexible
information and monitoring service for use by other middleware components and
applications.

R-GMA presents users with a virtual database and mediates queries posed at
this database: users pose queries against a global schema, and R-GMA takes respon-
sibility for locating relevant sources and returning an answer. R-GMA’s architecture
and mechanisms are general and can be used wherever there is a need for publishing
and querying information in a distributed environment.

We discuss the requirements and design of R-GMA as deployed on the DataGrid
testbed. We also describe some of the ways in which R-GMA is being used.

Keywords: DataGrid, Grid information system, Grid monitoring, Grid monitoring
architecture, R-GMA

1. Introduction

This paper describes the design and implementation of the Relational
Grid Monitoring Architecture (R-GMA). R-GMA is a Grid informa-

∗ Now at CERN, Switzerland.
† Under contract from Objective Engineering Ltd.

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

pdf.tex; 2/04/2004; 18:25; p.1



2 A.W.Cooke et al.

tion and monitoring system built by Work Package 3 of the European
DataGrid project [6].

Grids, which are put together by cooperating organisations to share
computing resources, are designed to be big. The main aim of a Grid
information and monitoring system is to provide a way for users to
obtain information about Grid resources as quickly as possible. How-
ever, there can be a huge number of data sources scattered around
the Grid. R-GMA takes a novel approach to solving this problem.
To a user, R-GMA appears as a “virtual database”. The user simply
queries a relational global schema, and R-GMA takes the responsibility
of locating relevant sources and returning an answer (this is called
“mediation”).

The advantage of R-GMA’s approach is that users are offered all the
flexibility that the relational model and SQL query language bring. The
relational approach has a sound theoretical basis [3], and its framework
has been extended recently to the world of streams by the database
community [1]. In R-GMA, both “one-time” and continuous queries
over streams are supported.

The flexibility gained by choosing a relational data model over, say,
a hierarchical model does come with some costs. It is less obvious how
a relational schema can be distributed across the Grid. Indexes still
need to be chosen with certain queries in mind. However, the main
advantage is that the relational model allows queries to explore complex
relationships in data.

This paper details how the R-GMA approach has been realised.
The requirements that drove the design of our system are described
in Section 2. R-GMA’s design builds on an architecture recommended
by the Global Grid Forum for its scalability and flexibility: the Grid
Monitoring Architecture. In Section 3 we describe this architecture, and
look at other Grid monitoring systems that have been built from this.
Section 4 describes the design of R-GMA while Section 5 describes
how the task of “mediation” is achieved in R-GMA. Finally, Section
6 describes the experiences we have had in building and deploying
R-GMA in DataGrid, and the plans for developing the R-GMA system
in EGEE, the European Union’s follow-on project.

2. Grid Monitoring

We begin by describing how DataGrid’s middleware components in-
teract, before discussing the requirements of a Grid information and
monitoring system.

pdf.tex; 2/04/2004; 18:25; p.2



R-GMA: Mediating Information about a Grid 3

On a Grid, one can distinguish between rapidly changing data on
the one hand and more static data on the other. Often the term Grid
monitoring refers to managing data of the first kind, while a Grid
information system would handle data of the second kind. As we argue
in the present paper, Grid components need a unified system that is
able to deal with both kinds of data. Thus, when using the term Grid
monitoring system, we refer to what might more correctly be called a
Grid information and monitoring system.

2.1. Overview of DataGrid Components

Logging and
Bookkeeping

User
Interface

Replica
Catalogue

Data Transfer
Job Submisssion
Results
Status Information

Resource
Broker

Computer

Computing
Element

Computer

Computer Computer

Storage
Element

Monitoring
System

Figure 1. The major components of DataGrid.

Figure 1 shows a “bird’s eye” view of the components that make
up a Grid. Institutions participating in a Virtual Organisation [7] will
contribute computing resources: computing elements, storage elements
and network bandwidth. Distributed across the Grid are resource bro-
kers, replica catalogues and other components, which coordinate and
manage access to computing resources and experimental data. At the
centre is a Grid monitoring system, which is used by these components
to publish or query information about the state of resources on the
Grid.

A user submits a job using the user interface. The user will specify
certain requirements, e.g. that certain experimental data stored on the
Grid is used, that the job should run in parallel using a number of
CPUs on machines having the correct software, and that the output
should be stored on at a particular location.

The resource broker has the responsibility of locating the best re-
sources for running that job. It first consults the replica catalogue to
locate the data requested by the job (the replica catalogue maps logical
file names to physical locations). It then queries the monitoring system
to find suitable computing elements close to the storage elements that

pdf.tex; 2/04/2004; 18:25; p.3



4 A.W.Cooke et al.

hold the experimental data, and then forwards the job on to the com-
puting elements to run. As the job progresses, information on the job’s
status is published. The logging and bookkeeping service tracks and
logs the jobs that are running on the Grid. Finally, users can monitor
the progress of their job using the user interface, which will query the
monitoring system.

2.2. Use Cases and Requirements

A Grid monitoring system must make information about the status of
Grid resources and jobs available both to users and to other components
of the Grid. We will now specify some typical use cases of a Grid
monitoring system in order to highlight the requirements of such a
system.

1. A resource broker needs to quickly locate (within a few seconds) a
cluster with 8 CPUs and 1 GB of memory that is currently lightly
loaded. The cluster must have ATLAS-6.0.4 software installed, and
have a network link to a SE holding certain experimental data.

2. A visualisation tool enables users to monitor the progress of their
jobs. Its display needs to be updated whenever the job status changes.

3. The logging and bookkeeping service needs to know what resources
a job has used on the Grid and for how long, in order to be able to
charge for usage.

2.2.1. Publishing Data
The act of publishing requires two abilities: the ability to advertise
what data is available, and the ability to answer requests for that data.

Data about a Grid may be stored or generated in different ways.
For example, details about the topology of a network might be held in
a database (use case 1). Information about the current status of a job
might be computed by a script running on a computing element (use
case 3). A Grid monitoring system, therefore, needs suitable interfaces
to allow applications to publish a range of data sources.

Data can be perceived in two different ways: as a stream of changing
values, or as a static set (or pool) of values. Database management
systems for example, create the illusion that data is static through
concurrency control, even when in reality data might be flowing rapidly
into the database. The stream metaphor is useful when users want to
query for change. A Grid monitoring system should have publishing
interfaces that support both of these perspectives.

pdf.tex; 2/04/2004; 18:25; p.4



R-GMA: Mediating Information about a Grid 5

2.2.2. Locating Data
Data will be distributed across the entire fabric of the Grid, and a
Grid monitoring system should provide easy ways for users to locate
sources with interesting data. In addition, a global view over all the
data published in the system must be provided so that users can easily
explore the relationships between components.

2.2.3. Queries with Different Temporal Characteristics
Since a Grid monitoring system should be able to publish both static
and stream data, it should also be possible to query both types of
published data.

From the use cases, we see that it must be possible to find out about
the latest-state of a resource (use case 1), or to be notified continuously
whenever the state of a component changes (use case 2). Likewise,
the history of a stream is sometimes needed (use case 3). Thus, a
Grid monitoring system should support three temporal types of query:
continuous, latest-state and history.

To be accepted by users, the query language should capture most of
the common use cases, but should not force a user to learn too many
new concepts. The queries should also be processed in a timely manner,
e.g. a resource broker must receive accurate up-to-date information
within only a few seconds of its query (use case 1).

2.2.4. Scalability, Performance and Robustness
It is envisioned that Grids will contain many thousands of resources,
spread over a large geographical area. For example, it is planned that
thousands of CPUs will be made available via a Grid to physicists
working on the Large Hadron Collider [13]. It is inevitable that the
fabric of such a large Grid will be unreliable; network failures and other
problems will be common place in Grids.

The monitoring system must be able to scale to cope with data
being published by a large number of resources simultaneously and to
respond with correct answers in a timely manner. It must not be a
performance bottleneck for the entire Grid.

The monitoring system itself should be resilient to failure of any of
its own components, otherwise the whole Grid could fail along with
it. The monitoring system cannot have any sort of central control as
resources will be contributed by organisations that are independent of
each other.

pdf.tex; 2/04/2004; 18:25; p.5



6 A.W.Cooke et al.

2.2.5. Security
Users of the system should identify themselves so that unauthorised
users are prevented from accessing data. This is known as authentica-
tion. Also, a tool that publishes data may want to restrict, for example,
certain columns of its relations from particular users. This is called
authorisation. The monitoring system, therefore, should support both
authentication and authorisation.

2.2.6. Interfaces
Grid-enabled software will need a way of accessing the monitoring
system so that information can be published or retrieved to support
decision making. Thus, APIs should be provided in a number of lan-
guages. Other interfaces, e.g. a web page, would also be useful for casual
monitoring of the Grid.

3. The Grid Monitoring Architecture

The Global Grid Forum [8] have identified a Grid Monitoring Architec-
ture (GMA) [16], which could offer the scalability and flexibility needed
by a Grid monitoring system. In this section we describe the GMA,
and look at two implementations of this in light of the requirements
identified in Section 3.

3.1. Overview of the GMA

The Grid Monitoring Architecture (GMA) is a simple architecture
containing three main types of actors:

Producer: Makes monitoring data (events) available, e.g. a sensor
reporting on a computing element’s status.

Consumer: Requests monitoring data, e.g. a resource broker that
wants to locate suitable computing elements.

Directory Service: A place where producers can advertise their data,
and consumers can advertise their needs.

Grid components act out these roles using API interfaces.
Figure 2 shows the interactions of these actors. A producer registers

a description of its event stream with the directory service. A consumer
contacts the directory service to locate producers that have data rel-
evant to its query. A communication link is then set up directly with
each producer to acquire data, either by a publish/subscribe protocol,
or by a query/response protocol. Consumers may also register with

pdf.tex; 2/04/2004; 18:25; p.6



R-GMA: Mediating Information about a Grid 7

Consumer

Directory

Service

Events

Producer

Figure 2. The components of the GMA and their interactions

the directory service. These are then notified whenever new producers
become available.

Intermediary components may be set up that consist of both a
consumer and a producer. Intermediaries may be used to forward,
broadcast, filter, aggregate or archive data from other producers. The
intermediary then makes this data available for other consumers from
a single point in the Grid.

By separating the tasks of information discovery, enquiry, and publi-
cation, the GMA is scalable. However, it does not define a data model,
query language, or a protocol for data transmission. Nor does it say
what information should be stored in the directory service. There are no
details of how the directory service should perform the task of matching
producers with consumers.

3.2. GMA Implementations

Two notable systems that can be seen to fit the GMA architecture are
Hawkeye [12] and the Monitoring and Discovery Service (MDS) [5].

Hawkeye was developed as part of the Condor project [15], and is
used for monitoring and managing distributed systems. It consists of
monitoring agents (GMA producers) at each computing node, which
register and periodically stream data to a central manager (GMA di-
rectory service and intermediary). Hawkeye has a semi-structured data
model (“ClassAds”) and its query types resemble those outlined in
Section 2.2.3. Users can query both the latest-state and the history of
the stream (an archive is kept). Also, users can define triggers, such as
“send an email if a machine is low on disk space or swap space”. The
main drawback of Hawkeye from the point of Grid monitoring is that
the data model and query language is limited, and that the system has
a central point of failure - the manager.

MDS continues to be developed as part of the Globus Toolkit [9]. It
consists of information providers (GMA producers) and aggregate di-
rectories (GMA directory service and intermediary). Data is organised

pdf.tex; 2/04/2004; 18:25; p.7



8 A.W.Cooke et al.

using a hierarchical model, based on the Lightweight Directory Access
Protocol (LDAP) in version 2, and on XML in version 3.

MDS has a scalable architecture, and is able to present to users a
global view over the data. In version 2, latest-state queries are sup-
ported; however there is no assurance that the answers are up-to-date,
as cached data is only refreshed when queries are received. Also, version
2 provides no easy way of supporting history queries. Some of these
problems were addressed in version 3. However, the main drawback of
MDS is its limited query language. Firstly, the schema must be designed
with popular queries in mind. Secondly, there are no mechanism to
capture relationships in the data that are not hierarchical, e.g. join
operations.

4. R-GMA’s Design

In this section we describe R-GMA’s architecture and the rationale
behind its design. R-GMA builds upon the GMA proposal (see Sec-
tion 3.1) by specifying a data model, a query language and the func-
tionality of the directory service.

The implementation of this design is on-going work, and the state
of the final implementation by the end of DataGrid is discussed in
Section 6.

4.1. R-GMA: A Virtual Database

Users need to be able to locate interesting information using the mon-
itoring system; but the difficulty is that data is scattered across the
whole Grid. It would be useful if the system could operate like a
database, presenting a schema over which queries can be posed. How-
ever, it wouldn’t be practical to stream all data into a central database,
as this would become a single point of failure for the Grid. Therefore,
R-GMA creates the illusion of a database through which data appears
to flow.

To implement a virtual database requires techniques of data inte-
gration which have been developed within the database community
over the last 15 years. Data integration systems use a mediator [17] for
matching queries posed over the global schema with sources of relevant
information. Several approaches have been suggested for performing
this “matchmaking role” [11]. One approach is local-as-view where
data sources describe their content as a view on the global schema.
This provides the flexibility of being able to add and remove sources
without reconfiguring the global schema, however query answering is

pdf.tex; 2/04/2004; 18:25; p.8



R-GMA: Mediating Information about a Grid 9

Consumer
API

Application

Consumer
Agent

Registry

Producer
Agent

Producer
API

Sensor

Data

Meta data

Figure 3. The roles and agents of R-GMA

not straight forward. We take the ideas of the local-as-view approach
and apply them to data streams.

4.2. Software Design Considerations

R-GMA picks up the GMA metaphor of Grid components playing the
roles of producer and consumer. We provide lightweight APIs to allow
the components to act out their role. The functionality of the APIs is
provided by agents which are created on their behalf and located on a
web server. Figure 3 shows the interactions between the APIs, agents
and the registry.

In our system, agents are realised using Java servlets hosted by web
servers. A web-based architecture is convenient as only a small number
of extra ports need then be opened across a firewall to accommodate
R-GMA, and control messages can be encoded and decoded from XML
using standard web service tools and transported by HTTP.

Protocols are needed to cope with the unreliability of Grid com-
ponents and its networks. One common approach is for registration
“heartbeats” to be sent from sender to receiver. If a problem occurs,
and heartbeats fail to arrive within some termination time, the receiver
can assume that the sender is no longer around. The Grid Resource
Registration Protocol (GRRP) [5] is a heartbeat protocol proposed by
the Globus project. In R-GMA, GRRP heartbeats are sent from API
to agent, and from registered agent to registry.

4.3. R-GMA Components

Figure 4 shows the components that make up R-GMA. Like the GMA,
R-GMA has producers, consumers, a registry (GMA directory service)
and republishers (GMA intermediaries). We refer to producers and
republishers collectively as publishers. Unlike the GMA, our system
also has producer and consumer agents and a schema. Also, in R-GMA

the registry is mostly hidden from our users—the consumer agent has

pdf.tex; 2/04/2004; 18:25; p.9



10 A.W.Cooke et al.

Consumer
Register Query
& View (Q=V)

Producer

Republisher

Consumer

Producer

Producer

Registry Schema

Register Query

Register View

Figure 4. The components of R-GMA and their interaction with the Registry.

mediator functionality that will perform registry lookups on behalf of
the user.

An analogy can be drawn with the market place. Any market place
has buyers (consumers), manufacturers (producers) and wholesalers
(republishers). Manufacturers and wholesalers are both types of sell-
ers (publishers), which advertise their services (register) in the yellow
pages (registry). Buyers might prefer to buy from wholesalers (to query
republishers), as this reduces some transport overhead: otherwise they
would have to visit manufacturers (producers) individually to obtain
the same choice of goods.

We now give an overview of the components of R-GMA, detailing
their functionality.

4.3.1. Schema
Just as buyers and sellers need a common language in order to under-
stand each other, in R-GMA, a language is needed for describing what
producers have to offer, and what consumers want. This language is
based on SQL, and the vocabulary consists of relations that together
make up a global schema. R-GMA’s schema component has the re-
sponsibility of storing and maintaining this global schema. It acts as
a catalogue that describes all of the products on offer in the market
place, as well as their relationships. The registry and the agents will
contact the schema whenever they need to know about the relations of
the global schema, for example, when validating a query.

The Grid community have identified a core schema, known as GLUE
[10], that describes the standard components of a Grid. R-GMA ships
with a relational version of this; however users can easily introduce new
relations into the global schema.

R-GMA relations have attributes and types, as in SQL. As each
relation represents a stream, it also implicitly has a timestamp attribute

pdf.tex; 2/04/2004; 18:25; p.10



R-GMA: Mediating Information about a Grid 11

of type DateTime, indicating at what time the tuple was published.
These timestamps are set with clocks that are synchronized with each
other using the network time protocol.”

A subset of the attributes can be singled out as the primary key,
and this key usually identifies the parameters of a measurement. In
R-GMA, any two tuples in the system that agree on the key attributes
and the timestamp will also agree on the remaining attributes.

For instance, R-GMA’s schema contains the core relation tp to
publish the network throughput between sites connected to the Grid.
The relation has the schema

tp(from, to, tool, psize, value, timestamp),

to measure the network throughput according to readings by a certain
tool, to transport packets of a specific size from one site to another.
The from, to, tool and psize attributes make up the primary key of tp.

A particular set of values for a primary key can be thought of as
representing a channel in a stream. A tuple in the tp relation might be

tp(′hw′, ′ral′, ′UDPmon′, 1000, 2.4, 2004-01-12 11:26:42)

giving a measurement of 2.4 ms for a 1000 byte UDPmon packet be-
tween Heriot-Watt and Rutherford Appleton Laboratories on 12 Jan-
uary 2004 at 11:26am. The channel would be identified by the values

(′hw′, ′ral′, ′UDPmon′, 1000).

In R-GMA, keys are not enforced, but are used to identify channels.

4.3.2. Producer Role
The role of a producer is to publish data. This involves two tasks:
(i) advertising the tuples that they make available, and (ii) answering
requests for data. When a job runs on the Grid, scripts are invoked on
different machines to control the execution of the computation. To be
able to perform the first task of a producer, these scripts need to be
enhanced so that they can register a description of their data. For the
second task, the scripts need to be able to process queries and return
answers. R-GMA offers these abilities through the producer API.

One method in the API is provided for registering a view on the
global schema. This relates the local stream relation of the producer
to a relation in the global schema, and has the form of a simple SQL
select query, e.g.

SELECT * FROM tp WHERE from = ′hw′ and tool = ′UDPmon′.

pdf.tex; 2/04/2004; 18:25; p.11



12 A.W.Cooke et al.

Another method allows the producer to insert a collection of tuples. The
producer agent supports a component playing the role of a producer
by taking the responsibility of storing tuples and answering queries.

4.3.3. Consumer Role
The role of a consumer is to locate and collect together monitoring data
of interest. For example, the resource broker will act as a consumer to
access information about resources. To perform this role it needs the
ability of posing an SQL query of a certain type and of retrieving an
answer. R-GMA offers these abilities through the consumer API.

In R-GMA, consumers are defined by both an SQL query, and a
query type. The query type may either be history or latest-state (these
queries are collectively called one-time queries), or continuous. Orthog-
onal to this is the distinction between local and global queries. A local
query is directed towards one or more publishers, while a global query
is posed without specifying any publishers and needs to be translated
into a local query in order to be executed. This translation process is
called mediation. Thus, the consumer API allows a user to pose a query
and declare its type. The consumer agent takes on the task of planning
the execution of a query and retrieving tuples.

Once the consumer agent starts to retrieve tuples, these need to be
passed on to the consumer. The consumer API offers a method that
allows tuples to be retrieved one at a time, or as a collection. With this
mechanism, a user who is only interested in receiving, say one tuple,
need not wait for a whole answer set to arrive.

4.3.4. Producer Agents
A producer agent helps Grid components to play the role of a producer.
It acts on behalf of the producer by registering a view describing the
data, and by answering requests from consumers for that data.

When a producer inserts tuples using the API, these are forwarded
to the agent. The agent then checks that the tuples conform to the
producer’s descriptive view, before storing the tuples in a buffer. A
“retention period” is defined by the producer, which determines how
long tuples will be held in the buffer before they are discarded.

In R-GMA, all producer agents are capable of answering continuous
queries. In addition, producer agents may be configured, at a small
performance cost, to be able to answer latest-state or history queries.
A database is used for this, and one-time queries are simply passed on
to the supporting database.

The producer agent registers the view, the retention period (which
is useful for query planning), and the query types that are supported
on behalf of the producer. The registration acts as an advertisement,

pdf.tex; 2/04/2004; 18:25; p.12



R-GMA: Mediating Information about a Grid 13

and consumers that are interested (either in its local relation, or in the
global relation) will contact it with a suitable query.

4.3.5. Consumer Agents
A consumer agent assists Grid components in playing the role of a con-
sumer. The first stage of query answering is to identify which publishers
have relevant information, and to decide which of these to contact. The
consumer agent cooperates with the registry for this, and details will
be given in Section 5.

Currently, queries are processed in the following way. Once the con-
sumer agent has decided on a query plan, it contacts each publisher in
the plan in turn with a local query. As answers arrive, the consumer
agent stores these in a single queue. The consumer can then retrieve
the answer by “popping” tuples from the queue, as described earlier.

The improvement of R-GMA’s query answering capabilities is on-
going work. We hope to take advantage of a distributed query processor
that is currently being developed as part of the OGSA-DAI project [14].
When this is ready, R-GMA’s consumer agent will be adapted to use
it.

4.3.6. Republishers
As the Grid grows in size, mechanisms are needed in R-GMA that en-
sure that popular queries are still answered efficiently; republishers (c.f.
GMA intermediaries) are used for this purpose. A republisher is similar
to the view mechanism of a relation database—it poses a continuous
query over the global schema and publishes the answer stream.

For continuous queries, it can be expensive (more network traffic,
more socket connections) to contact many producers. If a republisher
is available that has already merged these streams, then a consumer
agent will answer the query more efficiently by contacting this instead.

For one-time queries, it can be expensive to perform a query that
involves distributed query processing, such as a distributed join. How-
ever, if a republisher is available that has all the relevant data in a
database, then such a query can be answered efficiently by passing the
query onto that database.

In principle, as both the input and output of a republisher is a
stream, hierarchies of republishers can be built. For example, repub-
lishers could be set up at sites, and these could all feed into a top-level
global republisher. Queries that only request data from an individual
site could be served by a site republisher, whereas the global republisher
could serve more general queries.

The advantages that republisher hierarchies could bring depend on
whether relations can be partitioned in a sensible way. The current

pdf.tex; 2/04/2004; 18:25; p.13



14 A.W.Cooke et al.

system allows hierarchies to be set up manually. However, we are de-
veloping algorithms and protocols that automatically generate and
maintain such a hierarchy [4].

4.3.7. Registry
Just as the yellow pages directory helps buyers in a market place to lo-
cate sellers, the registry allows producers and republishers to advertise
their “goods”, and helps consumer agents to find publishers. However,
the registry is hidden from the users of the system. Instead, their agents
interact with the registry on their behalf.

Consumer agents interact differently with the registry, depending on
whether they have a continuous or a one-time query.

For one-time queries, the simplest approach is for the agent to con-
sult the registry each time the query is run. The registry is able to
identify publishers that are relevant to the query, and returns their
address, type, and other information (e.g. retention periods) that are
useful for planning the query.

In contrast, as continuous queries are long-lived, the query is reg-
istered by the agent. The registry then ensures that throughout the
lifetime of the consumer, it can receive all of the data the query asks
for: the consumer is notified as new relevant publishers are registered
or dropped.

5. Answering Queries in R-GMA

With R-GMA, clients are relieved from the task of locating sources
of information. The schema models what kind of information about
the Grid is available in principle. A client poses its query against the
schema, which is translated by the system into a set of queries over the
local relations of relevant publishers and then executed. This process is
called mediation.

In this section, we first discuss the semantics of a query for each
of the three temporal types introduced beforehand. That is, we define
which is the set or stream of tuples that make up the answer of a query.
This is not completely straightforward since queries are not evaluated
over a relational database. It will turn out that sometimes queries can
only be answered partially if the data needed for a full answer are not
available.

Then, we discuss the mediation process. It consists of two stages,
(i) matchmaking, which is the role of the registry, and (ii) query plan-
ning, which is the role of the consumer agent. As the semantics and the

pdf.tex; 2/04/2004; 18:25; p.14



R-GMA: Mediating Information about a Grid 15

approach to mediation differs between one-time and continuous queries,
we discuss each case separately.

5.1. Query Semantics

5.1.1. Semantics of One-Time Queries
One-time queries are arbitrary SQL queries, which are flagged either
as a history or as a latest-state query. Suppose that Q is such a query.
We indicate its query type using the superscripts h and l, respectively,
thus writing Q(h) or Q(l). We denote the set of answers obtained by
evaluating the SQL query Q over some database D as Q(D).

Suppose the query is being posed at a given point in time t0. Up until
time t0, the producers of R-GMA—including those that have ceased
to exist—will have published a certain set of tuples, all of which have
a timestamp that is less or equal to t0. Conceptually, we load all these
tuples into one database, which we denote as D(h). Then the set of
answers to the history query Q(h) is defined as the result of evaluating
Q over D(h), formally, Ans(Q(h)) = Q(D(h)).

To define the semantics of a latest-state query, we have to go back
to the concept of a channel. Consider as an example the relation tp
with the schema

tp(from, to, tool, psize, value, timestamp),

where the first four attributes form the primary key. A set of values for
these attributes defines a channel, and all the tuples that agree on these
attributes are the tuples that have been sent across the channel. We
assume that different producers always produce for different channels.
We say that a channel is alive at time t0 if its producer is registered
at this point in time. Now, we construct conceptually a database D(l)

that contains for each channel that is alive the tuple with the latest
timestamp less or equal to t0. Then the set of answers to the latest-state
query Q(l) is defined as the result of evaluating Q over D(l), formally,
Ans(Q(l)) = Q(D(l)).

Note that the answers to Q(l) cannot be computed by evaluating Q
over the subset of D(h) that contains the latest tuple for each channel
present in D(h), because some of these channels may no longer be alive.
The restriction to channels that are alive is important since, for in-
stance, a resource broker would not be helped if it received information
about a computing element that has been shut down in the meantime.

pdf.tex; 2/04/2004; 18:25; p.15



16 A.W.Cooke et al.

5.1.2. Semantics of Continuous Queries
Currently, R-GMA only supports continuous queries that are selections
over a single relation, that is, queries that in SQL are written as

SELECT * FROM r WHERE C, (1)

where r is a relation and C is a condition. We will also use the relational
algebraic notation σC(r) for such a selection query.

Suppose that Q is a selection query. If Q is posed as a continuous
query, we write Q(c), using the superscript c to indicate a continuous
query. If Q(c) posed at time t0, then the answer Ans(Q(c)) is a stream
that consists of all tuples of relation r that satisfy condition C and
have a timestamp greater than t0.

Since tuples are published in a distributed fashion it is impossible
to require that the answer stream be chronologically ordered. However,
we impose the weaker requirement that the tuple making up a channel
are chronologically ordered. We say that a stream with this property
is weakly ordered.

We also plan to support two hybrid query types, which we call
continous+latest and continous+time queries. To indicate these types,
we use the superscripts cl and ct.

If Q is a selection query then Ans(Q(cl)) = Ans(Q(l)) ∪ Ans(Q(c)),
that is, the answer stream ships first the latest-state answers to Q and
then starts with the regular answer stream. Such a query would for
instance be useful for defining a republisher maintaining a latest-state
cache of its stream.

A “continuous+time” query is specified by a selection query Q with
an additional parameter s, which stands for the start time. It is ab-
stractly denoted as Q(ct)

s . The answer stream for this query consists of
all tuples of the relation of Q that satisfy the condition of Q and have
a timestamp greater than s. If s > t0, then the answer stream of Q(ct)

s

starts in the future, and if s < t0, then the answer stream starts in the
past. The latter version can be seen as a combination of a continuous
and a (simple) history query.

5.2. Answering Continuous Queries

When answering a query Q, we distinguish between (i) matchmaking,
that is, the task of identifying publishers that can potentially contribute
to answering the query (called relevant publishers), and (ii) query plan-
ning, that is, the task of deciding which publishers to contact, posing
queries over them, and combining the answers.

pdf.tex; 2/04/2004; 18:25; p.16



R-GMA: Mediating Information about a Grid 17

5.2.1. Matchmaking
Suppose a consumer with a continuous query Q = σC(r) has been
generated. The consumer agent then contacts the registry to register
the consumer and to obtain a list of relevant publishers.

Consider a publisher for the relation r that has registered a descrip-
tive view σD(r). When is such a publisher relevant to Q? Clearly, if
it is logically impossible to satisfy both C and D, then the producer
can never contribute a tuple to the query. However, if the condition C
AND D is satisfiable, then the publisher must be relevant; answer tuples
would be lost it were not contacted.

In general, checking the satisfiability of unnested conditions, formed
using AND and OR, is NP-hard in the worst-case, which could turn match-
making into a computationally expensive task. The current version of
R-GMA, however, only accepts queries and views that have simple
conditions. For queries, these conditions are of the form

Attr1Op1Val1 AND . . . AND AttrnOpnValn, (2)

where Attri is an attribute, Vali is a value and Opi one of the operators
“≤”, “=”, or “≥”; view conditions have the same form, except that
only the operator “=” is supported. For such conditions the satisfia-
bility check is simple. To perform it efficiently, the registry contains a
relational database that stores in a structured manner both consumer
queries and publisher views. Then, for a consumer query Q, R-GMA

generates a query over the registry database that retrieves all relevant
publishers for Q.

Similarly, when a new producer is registered by its agent, then
R-GMA creates a query that retrieves all consumers for which that
publisher is relevant and notifies their agents of the new producer.

5.2.2. Query Planning and Execution
Again, a simple approach has been chosen for planning continuous
queries in the current implementation of R-GMA, in that only pro-
ducers are used to answer a query—republishers are not used. We have
developed theoretical foundations for a more general approach [4], but
we are waiting for a clear use case before implementing this.

A plan that delivers all answer tuples for a selection query σC(r)
consists of contacting all relevant producers, querying them for those
tuples of the relation in question that satisfy the query condition, and
finally merging the answer streams. When new producers are created
or exisiting ones die, the plan is adapted in a straightforward manner.

Techniques that make use of republishers need to be considerably
more sophisticated. For one, republishers introduce redundant data,
and a choice has to be made as to which publisher to use in a query

pdf.tex; 2/04/2004; 18:25; p.17



18 A.W.Cooke et al.

plan. Moreover, plans have to be modified to take advantage of new
republishers or to compensate for a republisher that is no longer avail-
able. When switching plans, special care must be taken to avoid the
loss of tuples or duplicate tuples. We expect a need for republishers to
arise as R-GMA is used in larger Grids.

5.3. Answering One-Time Queries

There are two reasons why one-time queries in R-GMA are more
difficult to answer than continuous queries.

The main difficulty is due to the fact that history or latest-state
queries refer to data that have been produced in the past. Therefore,
such a query can only be answered if a producer agent or a republisher
maintains the necessary data in a latest-state or a history database
for its streams. To ease our presentation, we say that a producer is
a latest-state or history producer if its agent maintains a latest-state
or history database. Similarly, we talk about latest-state and history
republishers. Note that producers and republishers can be set up to
support both types.

A second difficulty arises if the data are distributed over more than
one database. In such a situation query answering would require some
specialised mechanism for distributed query processing. Until now, no
production-strength distributed query processors were available in the
public domain, and so R-GMA has only relatively simple mechanisms
for distributed query processing.

They are based on the observation that sometimes a global query Q
can be translated into several local queries Q1, . . . , Qn over databases
D1, . . . ,Dn such that Ans(Q) = Q1(D1)∪· · ·∪Qn(Dn). If this is possible,
the query can essentially be executed locally and only the results need
to be merged. This approach works for example for selection queries.

To apply such an approach to more complex situations, more meta-
information about the databases would be needed. For instance, equal-
ity joins often involve attributes where one is a foreign key referring
to the other. If a foreign key constraint is maintained locally, then the
corresponding join could also be executed locally. However, R-GMA

does not support foreign keys so that this optimisation technique is not
feasible at present.

5.3.1. Matchmaking
When a consumer agent receives a one-time query it checks whether
it is a selection with a condition as in Equation 2. If so, it is called a
simple query; if not, it is called complex query.

pdf.tex; 2/04/2004; 18:25; p.18



R-GMA: Mediating Information about a Grid 19

If it is a complex query, R-GMA cannot process it locally. Thus,
the agent asks the registry for a list of all publishers that are of the
same type as the query and are capable of processing the query alone.
We say that a publisher publishes fully for a relation r if its descriptive
view for that relation has an empty WHERE clause, i.e., if it is of the form
“SELECT * FROM r.” The registry returns a list of publishers each of
which satisfies the following criteria: the publisher is publishing for all
relations that occur in the query and,

− in case it is a republisher, it publishes the query relations fully, or

− in case it is a producer, there is no other producer for any of the
relations in the query.

In both cases the publisher can answer the query alone. In the first
case, it is a republisher that collects all the data for all the relations in
the query. In the second case, it is a producer that holds all the data
needed because it is the only source of data for the query relations. If
none of the two cases holds, R-GMA does not attempt to answer the
query and the consumer agent returns a warning.

If the query is simple, then it can be processed locally. The agent
asks the registry for relevant publishers that are of the same type as
the query. They are determined as for a continuous query.

5.3.2. Query Planning and Execution
The guiding principle for answering complex queries is to ensure that
answers are always correct. Currently, R-GMA can only ensure this by
handing the query over to a complete publisher. We say a publisher is
complete with respect to its view if σD(r) contains all tuples of relation
r that satisfy D. In general, answers to queries involving negation or
aggregation could be incorrect if executed by an incomplete publisher.

All the publishers in the consumer agent’s list are complete. How-
ever, they may be closer or less close in terms of communication time.
Therefore, the agent polls the publishers on its list to identify the one
that can reply the fastest, and then sends the query to it. The agent
forwards to its client the result set returned by the publisher agent.

For simple queries, correctness of answers is straightforward to guar-
antee. A consumer agent that has to set up a plan for a simple query re-
ceives a list of relevant republishers R1, . . . , Rm and relevant producers
P1, . . . , Pn.

Currently, the agent follows a simple approach. If there is a re-
publisher that publishes fully for R, then it is chosen, otherwise, all
producers are contacted. In the absence of full republishers, the ap-
proach is not guaranteed to deliver all answers because there may be
producers that do not maintain latest-state or history databases.

pdf.tex; 2/04/2004; 18:25; p.19



20 A.W.Cooke et al.

Below we sketch how republishers that publish only a fragment of
the relation r can be used to improve the coverage of a plan. Since
a republisher’s query is registered as its descriptive view, and since a
republisher makes available all answers to its query, a republisher is
always complete with respect to its view.1

Consider two republishers R and R′ with views σD(r) and σD′(r),
respectively. Then R contributes at least as many answers to the query
Q = σC(r) as R′ if the conjunction C ∧ D′ logically entails D. In this
case we say that R′ is subsumed by R with respect to Q. Due to the sim-
ple structure of the conditions involved, subsumption is straightforward
to check.

Now, to create a plan one chooses among the republishers delivered
by the registry a collection Ri1 , . . . , Rik such that each Ri is subsumed
by some Rij . Then no other republishers are needed for answering the
query. Also, any producer that is subsumed by a republisher is not
needed. However, a producer that is subsumed by another producer
cannot be dropped from a plan because producers cannot be guaranteed
to be complete with respect to their views.

Since the view conditions of republishers can overlap with those of
other republishers and those of producers, the conditions in the local
queries have to be refined so that no duplicate tuples are returned.
For example, if a plan for the query σC(r) uses republishers R1, R2,
having views with conditions D1, D2, and a producer P , then the local
queries, using logica notation, would be posed as follows: the query for
R1 would be σC(r), the one for R2 would be σC∧¬D1(r), and the one
for P would be σC∧¬D1 ∧¬D2(r). The condition ¬D1 in the query over
R2 would filter out all tuples delivered by R1, and ¬D1 ∧ ¬D2 would
filter out those delivered by R1 or R2.

6. R-GMA in DataGrid and Beyond

From the outset, R-GMA was designed as a general purpose Grid infor-
mation system that embodied a number of novel concepts. In DataGrid,
R-GMA was mainly used for publishing network monitoring data and
for providing information on resources. In addition, it was tested for

1 The statement has to be taken with a grain of salt. Any republisher may miss
tuples from some producers due to network failures. Depending on the frequency
with which producers generate tuples, a latest state republisher may not contain
a tuple for each of the channels it covers. Finally, a history republisher usually
maintains only a history of a certain length, determined by its retention period.
These sources of incompleteness are not taken into account in R-GMA’s current
query planning.

pdf.tex; 2/04/2004; 18:25; p.20



R-GMA: Mediating Information about a Grid 21

monitoring batch jobs. We shall discuss the last two applications to
illustrate how the R-GMA concepts fitted the challenges arising in
DataGrid and which additional efforts were needed to reach a solution.
An important outcome of this work was that a user community was
established around the system.

6.1. Collecting Resource Information

The first major use of R-GMA in DataGrid was to gather data about
resources and to provide an up to date account to the resource brokers.
At the end of the project, DataGrid’s testbed comprised four resource
brokers and 25 sites, each with a computing and a storage element.

The software to produce the resource information was developed
within DataGrid and generated data in LDAP format. Similarly, the re-
source brokers were designed to pose queries against LDAP databases.
The reason was that Globus MDS (Version 2), which is based on LDAP,
had been foreseen as the initial information and monitoring system on
the testbed. However, because of concerns about the performance and
scalability of MDS, it was decided to migrate to R-GMA.

In this scenario, R-GMA was used as an information collection and
distribution service. The resource information could be naturally classi-
fied into dynamic information produced by sensors, (e.g., the number of
free CPUs in a computing element) and static information that would
be updated occasionally (e.g., lists specifying access rights of users).

Using R-GMA producers was the method of choice for publishing
the dynamic information at a site, which was generated at intervals
of 30 seconds. However, for reasons discussed before, R-GMA did
not offer mechanisms specifically designed for handling static data.
Fortunately, the volume of the static information was moderate and
it was feasible to ship each site’s entire dataset on an hourly basis to
the resource brokers. This was done using another producer. However,
it is expected that this approach is unlikely to scale if sites need to
publish larger sets of static data. Instead, mechanisms may be needed
that forward only changes of “static” data sets.

In the vicinity of each resource broker, a latest-state republisher was
installed to collect the streams from all the producers and to provide
the information on which the broker would base its decisions.

Since neither the monitoring software nor the resource brokers had
been designed to interface with R-GMA, interoperability became an
issue. To bridge these gaps, two types of translators were provided,
called Gadget In (GIn) and Gadget Out (GOut). A GIn would take
LDAP output from the existing information providers and publish it

pdf.tex; 2/04/2004; 18:25; p.21



22 A.W.Cooke et al.

via the two producers, while GOut would map the relational data in a
latest-state republisher to the resource broker’s LDAP database.

This configuration had a clear drawback. On the one hand it cre-
ated redundancy of data since the LDAP databases were essentially
identical. On the other hand, since the resource brokers did not query
R-GMA directly, no advantage was taken of R-GMA’s ability to con-
tact alternate republishers if the designated one was unavailable.

The DataGrid testbed challenged R-GMA’s performance and sta-
bility and was crucial for hardening the code. Moreover, it was instru-
mental in creating a user community.

6.2. Job Monitoring

The particle physics experiments CMS and D0 used R-GMA in ex-
tended tests of real time job monitoring. In these experiments long
running data analysis jobs—lasting up to 24 hours—are run, which
require careful monitoring and bookkeeping. Since both tests used a
similar set-up we only discuss the one conducted by CMS (see also [2]).

Within CMS, a Batch Object Submission System (BOSS) had been
developed to submit jobs to a batch farm. It wraps a job into an
extra layer of code, which spawns a separate process that produces
information about the job’s progress and sends it to a local database.
In a Grid environment, a resource broker can pass the job to any remote
computing element and information on the job’s progress needs to be
sent back to the submitter’s site.

The goal of the tests was to establish whether R-GMA could be used
for this purpose, the main question being whether it could cope with a
sufficient number of jobs run concurrently. A set-up was chosen where
the code wrapped around a job would create a stream producer, while a
history republisher would collate the data about the jobs submitted at
a site. The jobs themselves were only simulated, while stream producers
would generate messages that were based on monitoring data collected
from real jobs.

The tests revealed that the number of producers that a single R-GMA

site could support was a bottleneck. Initially, stability was lost at just 10
producers. This led to a number of improvements, and eventually a sin-
gle site could support more than 2000 producers without running into
difficulties. This figure is very close to satisfying CMS requirements.

Since the relations needed for the tests were not part of the core
schema, it proved to be helpful that users can add new relations to the
global schema at any point in time. It turned out that this is a feature
that significantly increases the usability of R-GMA and gives it the
character of a generic information infrastructure.

pdf.tex; 2/04/2004; 18:25; p.22



R-GMA: Mediating Information about a Grid 23

6.3. Work Planned within the EGEE Project

Work on R-GMA will continue within the EGEE project (= “Enabling
Grids for E-Science in Europe”). The aim will be to enhance R-GMA in
several ways so that it can be deployed on large scale Grids. To this end
we will make R-GMA’s functionality available as a set of web services
based on the emerging Web Service-Resource Framework standard.

Future Grids will be shared by several virtual organisations (VOs).
For instance, the Large Hadron Collider Grid will be used by a number
of experiments. This requires mechanisms to ensure one VO can only
view its own information. In addition, more fine-grained authorisation
schemes will be needed to improve security in such a setting.

The registry and schema, each of which are currently realised as
a single component, will be replicated to eliminate a single point of
failure.

Finally, it is planned that mediation capabilities will be improved
to allow hierarchies of republishers to be created and exploited in
answering continuous queries. Moreover, if public domain middleware
for distributed query processing that is currently being developed in
other Grid projects (OGSA-DAI) proves to be reliable, R-GMA will
be extended to execute queries over multiple republishers.

7. Conclusion

We conclude with a discussion of how well R-GMA meets the require-
ments identified for Grid monitoring. Through the role of a producer,
Grid components can publish their monitoring data. The schema pro-
vides a global view of all the monitoring data available. Grid compo-
nents interested in monitoring data can locate and retrieve that data
through the role of a consumer. The actual task of locating and retriev-
ing the data is automated by the consumer’s agent and the registry.
By separating out the tasks of locating and retrieving data, the system
will scale effectively.

Although R-GMA has been designed as a Grid monitoring and
information system, the architecture is general and could be used for
other applications that require the location and querying of distributed
data streams.

References

1. Babcock, B., S. Babu, M. Datar, R. Motwani, and J. Widom: 2002, ‘Models
and Issues in Data Stream Systems’. In: PODS-21. pp. 1–16.

pdf.tex; 2/04/2004; 18:25; p.23



24 A.W.Cooke et al.

2. Bonacorsi, D., D. Colling, L. Field, S. Fisher, C. Grandi, P. Hobson, P. Kyberd,
B. MacEvoy, H. Nebrensky, H. Tallini, and S. Traylen: 2003, ‘Scalability Tests
of R-GMA based Grid Job Monitoring System for CMS Monte Carlo Data
Production’. In: Proceedings of the IEEE 2003 Nuclear Science Symposium.
Oregon.

3. Codd, E. F.: 1970, ‘A Relational Model of Data for Large Shared Data Banks’.
Communications of the ACM 13(6), 377–387.

4. Cooke, A., A. J. G. Gray, L. Ma, W. Nutt, J. Magowan, M. Oevers, P. Taylor,
R. Byrom, L. Field, S. Hicks, J. Leake, M. Soni, A. Wilson, R. Cordenonsi,
L. Cornwall, A. Djaoui, S. Fisher, N. Podhorszki, B. A. Coghlan, S. Kenny,
and D. O’Callaghan: 2003, ‘R-GMA: An Information Integration System for
Grid Monitoring’. In: R. Meersman, Z. Tari, and D. C. Schmidt (eds.):
CoopIS/DOA/ODBASE, Vol. 2888 of Lecture Notes in Computer Science. pp.
462–481.

5. Czajkowski, K., S. Fitzgerald, I. Foster, and C. Kesselman: 2001, ‘Grid
Information Services for Distributed Resource Sharing’. In: HPDC-10.

6. DataGrid: 2003, ‘The DataGrid Project’. http://www.eu-datagrid.org.
7. Foster, I., C. Kesselman, and S. Tuecke: 2001, ‘The Anatomy of the Grid:

Enabling Scalable Virtual Organization’. The International Journal of High
Performance Computing Applications 15(3), 200–222.

8. GGF: 2003, ‘Global Grid Forum’. http://www.ggf.org.
9. Globus: 2003, ‘Globus Toolkit’. http://www.globus.org.

10. Glue: 2003, ‘High Energy Nuclear Physics InterGrid Collaboration Board’.
http://www.hicb.org/glue/glue.htm.

11. Halevy, A. Y.: 2001, ‘Answering queries using views: A survey’. The VLDB
Journal 10(4), 270–294.

12. HawkEye: 2004, ‘HawkEye: A Monitoring and Management Tool for Dis-
tributed Systems’. http://www.cs.wisc.edu/condor/hawkeye.

13. LCG: 2004, ‘LHC Computing Grid Project’. http://lcg.web.cern.ch.
14. Smith, J., A. Gounaris, P. Watson, N. W. Paton, A. A. A. Fernandes, and

R. Sakellariou: 2002, ‘Distributed Query Processing on the Grid’. In: Grid
Computing - GRID 2002, Third International Workshop, Baltimore, MD, USA,
November 18, 2002, Proceedings, Vol. 2536 of Lecture Notes in Computer
Science. pp. 279–290.

15. Thain, D., T. Tannenbaum, and M. Livny: 2002, ‘Condor and the Grid’. In:
F. Berman, G. Fox, and T. Hey (eds.): Grid Computing: Making the Global
Infrastructure a Reality. John Wiley & Sons Inc.

16. Tierney, B., R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and R.
Wolski: 2000, ‘A Grid Monitoring Architecture’. Revised January 2002.

17. Wiederhold, G.: 1992, ‘Mediators in the Architecture of Future Information
Systems’. IEEE Computer 25(3), 38–49.

pdf.tex; 2/04/2004; 18:25; p.24



R-GMA: Mediating Information about a Grid 25

Appendix

A. Glossary

ComputingElement (CE): a Grid-enabled computing resource.

Globus, Monitoring and Discovery Service (MDS): originally Meta-
computing Directory Service, a LDAP based information system.

Resource Broker: a Grid middleware component that brokers the
running of Grid jobs, making use of the information service to ob-
tain grid status information about available resources, and sched-
ules jobs.

StorageElement (SE): a Grid-enabled storage system.

Virtual Organization (VO): A set of individuals defined by certain
sharing rules - e.g. members of a collaboration.

pdf.tex; 2/04/2004; 18:25; p.25



pdf.tex; 2/04/2004; 18:25; p.26


